
Applying Symbolic Execution to Test Implementations

of a Network Protocol Against its Specification

Hooman Asadian , Paul Fiterău-Broştean , Bengt Jonsson , Konstantinos Sagonas
Department of Information Technology, Uppsala University, Uppsala, Sweden

{hooman.asadian, paul.fiterau_brostean, bengt, kostis}@it.uu.se

Abstract—Implementations of network protocols must conform
to their specifications in order to avoid security vulnerabilities
and interoperability issues. We describe our experiences using
symbolic execution to thoroughly test several implementations
of a network security protocol against its specification. We
employ a methodology in which we first extract requirements
from the protocol’s RFC and turn them into formulas. These
formulas are then utilized by symbolically executing the protocol
implementation to explore code paths that can be traversed on
packet sequences that violate a requirement. When this explora-
tion exposes a bug, corresponding input values are produced
and turned into test cases that can validate the bug in the
original implementation. Since we let symbolic execution be
guided by requirements, it can naturally produce a wide variety
of requirement-violating input sequences, which is difficult to
achieve with existing techniques for protocol testing. We ap-
plied this methodology to test four different implementations
of DTLS against the protocol’s RFC. We were able to quickly
expose a known CVE in an older version of OpenSSL, and to
discover numerous previously unknown vulnerabilities and non-
conformance issues in DTLS implementations, which have by
now been confirmed and fixed by their implementors.

Index Terms—symbolic execution, network security testing

I. INTRODUCTION

Implementations of network protocols, such as TCP, TLS,

DTLS, etc., must conform to their specifications in order to

avoid security vulnerabilities and interoperability issues. Even

seemingly innocent deviations from the standard specification

may open implementations up for security attacks. Examples

include Heartbleed [8] and the TLS POODLE [3], [23]

downgrade vulnerability enabled by insufficient checking of

length fields or version numbers in input packets. At the same

time, testing of protocol implementations is made difficult

by the fact that they are stateful. To test the processing of a

particular packet, the implementation must first be brought to

a specific state by an appropriate packet sequence. Moreover,

the requirements concerning that packet may depend on the

preceding sequence. Thus, despite the fact that techniques for

testing of single-input programs such as fuzzing [39] and sym-

bolic execution [7], [12], [19] have made impressive progress

in recent years, their extensions to stateful protocols [25], [28],

[29] have not yet achieved the same level of effectiveness as

their single-input counterparts: these approaches are not able

to consider a sufficiently large range of adversarial inputs, and

may miss bugs that are exposed by specific input sequences.

Work partially funded by the Swedish Research Council (Vetenskapsrådet)
and the Swedish Foundation for Strategic Research through project aSSIsT.

In this paper, we describe our experiences using symbolic

execution to thoroughly test implementations of a network

protocol against its specification. We employ a methodology, in

which we first form a specification by extracting requirements

from the protocol’s RFC and formulating them as assertions

over the sequence of packets exchanged during a session. The

extraction can be done incrementally, considering individual

requirements separately. One such requirement could for

example concern the sequence numbers in a sequence of

packets, another one the version negotiation, etc. We then use

symbolic execution to search for code paths and corresponding

packet sequences that violate these requirements. In order to

test the processing of a sequence of packets, each protocol

party is tested separately: we consider the packets it receives

as a sequence of inputs and check the party’s output when

processing this sequence. We leverage symbolic execution to

explore the code paths that an implementation may traverse

when processing a packet sequence, tailoring it to explore only

those code paths and inputs which expose potential requirement

violations. Whenever such a violation, crash, or memory error

is observed, the symbolic execution engine generates specific

values that trigger this error, which are used to construct a

complete test case to validate the bug. To achieve scalability

for symbolic execution over a packet sequence, only those parts

of input packets that are relevant for the tested requirement

are made symbolic, using a pre-recorded sequence of packets

as a basis.
We applied our methodology to test four implementations

of DTLS against the protocol’s RFC. The DTLS (Datagram

Transport Layer Security) protocol is a variation of TLS

over UDP. DTLS is widely used in wireless networks, and

is currently one of the primary protocols for securing IoT

applications [30]. Two of the DTLS implementations we tested

(OpenSSL and MbedTLS) are among the most widely used

and well-tested. Using our methodology, we were able to detect

numerous, previously unknown, security vulnerabilities and

non-conformance issues in them, which have been confirmed

and/or fixed by now.
In short, the main contributions of our work are:

• We describe an experience in using symbolic execution

to thoroughly test implementations of a network protocol

against its specification, in which we tailor symbolic

execution to explore code paths that can expose violations

of requirements formulated over the processing of a

sequence of packets in a session.

70

2022 IEEE Conference on Software Testing, Verification and Validation (ICST)

978-1-6654-6679-0/22/$31.00 ©2022 IEEE
DOI 10.1109/ICST53961.2022.00019

20
22

 IE
EE

 C
on

fe
re

nc
e

on
 S

of
tw

ar
e

Te
st

in
g,

 V
er

ifi
ca

tio
n

an
d

Va
lid

at
io

n
(IC

ST
) |

 9
78

-1
-6

65
4-

66
79

-0
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

ST
53

96
1.

20
22

.0
00

19

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on June 25,2022 at 13:41:04 UTC from IEEE Xplore. Restrictions apply.

• We describe how our effort was applied to four DTLS

implementations against the protocol’s RFC, demonstra-

ting the effectiveness of our methodology on DTLS by

revealing more than thirty previously unknown vulnera-

bilities and non-conformance bugs in well-tested DTLS

implementations.

• We provide replication material [2] for all our experiments.

Outline: After an overview of our effort in the next section,

in §III we show how requirements from DTLS’s RFC are

encoded as formulas. We describe our implementation in §IV,

evaluate its effectiveness in §V, discuss related works in §VI,

and end with some final remarks.

II. OVERVIEW OF OUR METHODOLOGY

In this section, we give a high-level overview of the

methodology we used. It consists of three steps: i) a step

where requirements are extracted from the protocol’s RFC or

specification and turned into formulas; ii) a step where (nega-

tions of) these formulas are represented as assumptions and

assertions in the source code of the protocol’s implementation,

and where symbolic execution is used to explore code paths

that expose bugs in the implementation and produce values

for (selected) parts of the input(s) that follow these paths;

and iii) a step where complete test cases for these bugs are

constructed and are used to validate the bugs in the unmodified

implementation. We detail these steps below.

A. Extracting Specification Requirements

Protocols encompass specific requirements over sequences

of packets exchanged by two or more parties, sequences which

are also known as protocol sessions. For DTLS, as well

as for any other network protocol, we can extract a set of

these requirements by scrutinizing its Request for Comments

(RFC) [27, p. 13]. This task is facilitated by the fact that it is

common for RFCs to use particular keywords (e.g., "MUST",

"MUST NOT", "REQUIRED", "SHALL NOT", etc.) to signify

the strictness of the protocol’s requirements [5]. For example,

the keyword "MUST" expresses that the definition is an absolute

requirement of the specification, while "SHOULD" indicates a

recommendation. Starting from these keywords, one can derive

a set of requirements that can be represented by formulas over

sequences of inputs and outputs.

A prominent class of requirements, which we will refer

to as input validity requirements, concerns checking well-

formedness of (the sequence of) inputs. For example, the

following sentence from the DTLS RFC, specifies a requirement

regarding uniqueness of record sequence numbers in sessions:

For each received record, the receiver MUST verify that the record

contains a sequence number that does not duplicate the sequence

number of any other record received during the life of this session.

For a set of records R received during a DTLS session, we can

represent this requirement in predicate logic by the formula:

∀r,r′∈R: r �=r′ =⇒ r.sequence_number �= r′.sequence_number (1)

Another class of requirements concerns output generated

in response to (a sequence of) inputs. We refer to these as

input-output requirements. For example, the following sentence,

extracted from the DTLS RFC [27, p. 17] and its errata (ID:

5186), concerns the sequence number in a server’s response.

In order to avoid sequence number duplication in case of multiple

cookie exchanges, the server MUST use the message_seq in the

ClientHello as the message_seq in its initial ServerHello.

Letting resp(r, i) represent the i-th output generated in re-

sponse to input record r, we can express this requirement by

the formula:

∀r∈R: r.msg_type= client_hello =⇒
(resp(r,1).msg_type= server_hello =⇒

resp(r,1).message_seq= r.message_seq)

(2)

which uses the fact that the msg_type field of a record r contains

the type of its enclosed (and perhaps fragmented) message.

B. Symbolic Execution

Given a set of requirements expressed using formulas such

as (1) and (2), our goal is to detect bugs (constraint violations,

non-conformances, crashes and security vulnerabilities that may

be associated with not adhering to the RFC, etc.) in protocol

implementations (SUTs). Conceptually, the core idea of this

step is simple. For each requirement we insert instrumentation

into the SUT’s source code as follows: 1) input constraints

under which the requirement can be violated are inserted

as assumptions on input to the SUT’s source code, and

2) checks whether the SUT actually performs an action that

violates the requirement are inserted as assertions. We then use

symbolic execution to explore those executions that satisfy the

assumptions on input, looking out for actions that trigger an

assertion violation, crash, or memory error, and constructing

test cases that are witnesses for each of these bugs.

Symbolic execution analyzes programs for which (some of)

the input variables are designated as symbolic. It explores

the code paths that are possible for some values of the

symbolic input, and also provides input values that make

executions follow specific code paths. In order to apply

symbolic execution to a SUT, we represent the sequence of

input packets as structured-type variables, which can be named

after their message types as client_hello, client_key_exchange,

etc. Making complete packets symbolic would in many cases

not scale, therefore only the fields that can be expected to be

relevant for the considered requirement are made symbolic.

For instance, the payload, length, and several other fields, are

unlikely to affect the processing of sequence numbers, and

need not be made symbolic when checking requirements on

sequence numbers. The non-symbolic fields must then be given

concrete default values; we take these from the packet sequence

in a pre-recorded session.

Let us illustrate the above with the examples from §II-A.

An input validity constraint, such as Formula (1), refers to a

typically unrestricted set R of records received during a DTLS

session1. We can specialize R to be a set of three records

carrying message types client_hello2, client_key_exchange,

1Occasionally, the RFC might specify related constraints that limit R.

71

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on June 25,2022 at 13:41:04 UTC from IEEE Xplore. Restrictions apply.

and change_cipher_spec. In this set, all its elements have

a sequence_number field. To prepare for symbolic execution,

we pre-record a session containing these message types,

represent the records as structured-type variables and make their

sequence_number fields symbolic. We then add to the SUT’s code

the following assume statement (in C/C++ syntax), assuming

the negation of the constraint expressed by that formula (as this

is the constraint under which the requirement can be violated):

assume(! // negate the conjunction below

(client_hello2.sequence_number != client_key_exchange.sequence_number &

client_hello2.sequence_number != change_cipher_spec.sequence_number &

client_key_exchange.sequence_number != change_cipher_spec.sequence_number))

What we have done here is to manually construct the pair-wise

conjunction that the universal quantifier of Formula (1) will

produce, by specializing it to the case of three records with the

chosen message types. Of course, when the formulas are more

complicated or the sets of records that they involve are larger,

such assume statements can call appropriate auxiliary functions

that we add to the SUT instead of specifying the constraints

inline, as we did here. We must also add an assert statement

to check that the protocol does not use invalid input in some

forbidding way. For this case, the DTLS 1.2 RFC [27, p. 14]

specifies that “Invalid records SHOULD be silently discarded”, so

we may want to check whether an implementation achieves

progress (e.g., by changing states) even after reception of invalid

records. In implementations that already provide an API to

inspect their internal state(s) or when it is easy to add one,

the detection of such non-conformances can be fine-grained

and very precise. A coarser-grained approach, which is the one

we have implemented, is to simply check whether protocol

interactions complete successfully (e.g., handshake is achieved)

even in the presence of an invalid record in a test; this is done

by an assert(false) at the point where the SUT is about to

complete the interaction. For the DTLS protocol, this clearly

indicates the violation of a “SHOULD”-type requirement, and

thus non-conformance of the SUT to the standard.

For input-output requirements, such as Formula (2), we

augment the SUT with structure-type variables that represent

relevant output packets. Specializing resp(r,i) to the case

where r is the packet client_hello2, we add the assertion

assert(// checks message_seq validity

(resp(client_hello2,1).msg_type != server_hello) |

(resp(client_hello2,1).message_seq == client_hello2.message_seq))

Since an input-output requirement can be violated only on

valid inputs, we add an assume statement ensuring the validity

of the field client_hello2.message_seq.

In summary, a protocol requirement expressed by a first-order

logic formula is checked by augmenting the SUT as follows:

1) variables are inserted to represent the input packets and (in

the case of input-output requirements) relevant output packets;

2) the formula is specialized by instantiating its quantifiers to

the possible values in the pre-recorded sequence, producing a

quantifier-free expression over the packet-representing varia-

bles; 3) for an input validity requirement, its negation is added

in an assume statement, and an assert statement is added to

check that the invalid inputs are not handled in a forbidden way;

4) for an input-output requirement, the expression is added in

an assert statement checking correctness of the output, together

with an assume statement ensuring the validity of inputs.

C. Test Case Construction and Validation

Starting from some pre-recorded valid input sequence S of

records as seed, and given some time budget T , a symbolic

execution tool such as KLEE [7] will explore a number of

code paths of SUTa (the SUT that has been extended with

assume and assert statements and where some fields have been

made symbolic). For each code path that satisfies the assume

statements and triggers an assertion violation, crash, or memory

error, we record and return a tuple of values 〈v1, . . . , vk〉
for the fields f1, . . . , fk of records in S which have been

made symbolic. For each such code path, we can therefore

construct a test case by substituting the value of record field

fi with vi and keeping all other values in records of seed S
unchanged. Each of these test cases executes a unique code

path of SUTa. We can simply run these test cases in the

original SUT for validation. For tests that result in crashes

(e.g., segmentation faults, memory errors, etc.), the existence of

a bug in the SUT is clear. Tests that trigger assertion violations

expose non-conformances and other policy violations, given

our instrumentation to check protocol requirements.

III. DTLS AND ITS SPECIFICATION REQUIREMENTS

DTLS is a client-server protocol that secures communica-

tion over datagram-based transport layer protocols. It is an

adaptation of TLS, fulfilling a similar purpose, but doing so

for unreliable transport layer protocols such as UDP. DTLS is

available in two standardized versions, 1.0 [26] and 1.2 [27],

which are respectively based on TLS 1.1 [14] and TLS 1.2 [15].

DTLS secures communication through the establishment and

use of session keys. To that end, it is structured in several layers.

The Record layer performs encryption and encapsulation of sent

data and decryption and decapsulation of received data. The

Handshake layer establishes session keys and the cryptographic

algorithms to use at the Record layer. Other layers include

ChangeCipherSpec that handles key deployment, Application,

which provides a carrier for application data, and Alert, which

is used to signal unexpected events. Our work concentrates

on the Record and Handshake layers. We first explain the

operation of these layers, before introducing the requirements

defined for each layer.

The Record layer sits at the base, with all other layers

operating directly on top of it. It splits received network data

into records. The payload of these records is decrypted and

authenticated using session keys. The decrypted payload is

divided into messages, which are dispatched to the correspon-

ding upper layer. In the opposite direction, the Record layer

encrypts messages received from upper layers, encapsulates

them into records, and packs the records inside datagrams for

the transport layer. Before deployment of session keys, the

Record layer operates without encryption and authentication

(e.g., messages are extracted directly from record payloads).

72

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on June 25,2022 at 13:41:04 UTC from IEEE Xplore. Restrictions apply.

[]

[]

Fig. 1: DTLS handshake when pre-shared key (PSK) is used. Encrypted
messages are inside braces. Optional messages are inside square brackets.

The Handshake layer is engaged at the start of each DTLS

session in order to establish session keys and the cryptographic

algorithms to use at the Record layer. This is achieved by

completion of a DTLS handshake. Over the course of this

handshake, the client and server exchange flights of handshake

messages in a specified order; see Fig. 1 showing a handshake

using the pre-shared key (PSK) algorithm. The exact form of

the handshake varies depending on the key exchange algorithm

used to generate session keys. In addition to key establishment,

the Handshake layer is also tasked with fragmentation and

reassembly of handshake messages. Handshake messages when

packed inside a record may be too large to fit inside a datagram.

Consequently, these messages are first split by the Handshake

layer into fragments, before being passed on to the Record

layer. Conversely, fragments received from the Record layer

are first assembled to form unfragmented messages, and only

then processed. We shall revisit these terms in §III-B.

A. Record Layer Requirements

A DTLS record is a structured entity whose fields and types

are specified in the DTLS RFC [27, p. 6]. Fields which are

DTLS-specific (i.e., not part of the corresponding TLS record)

struct {

ContentType type;

ProtocolVersion version;

uint16 epoch; // New field

uint48 sequence_number; // New field

uint16 length;

opaque fragment[DTLSPlaintext.length];

} DTLSPlaintext;

are identified with the

comment New field. As we

can see, the epoch number

field is specified as a 16-

bit unsigned integer, and

the record sequence_number

as a 48-bit unsigned inte-

ger. The type and version fields are defined via enumerated
types. The value of the type field determines the upper layer

the message is destined for. For example, if the value of type is

handshake, the fragment should be passed on to the Handshake

layer, etc. Finally, the fragment field, denoting the message

contained in the record, is defined as a one-dimensional vector.

Given this structure and the TLS and DTLS RFCs, we can

formulate constraints over fields of a set of records R used in

a DTLS session, as follows.

1) Record Version: The DTLS RFC [27, p. 4] specifies only

two versions for DTLS. The formula for this field is simple:

∀r∈R: r.version∈{DTLS1.0, DTLS1.2}

2) Record Length: The TLS 1.2 RFC [15, p. 20] defines

record length as: “The length (in bytes) of the following TLSPlain-

text.fragment.” Moreover, the DTLS 1.2 RFC [27, p. 8] specifies

that the length is “Identical to the length field in a TLS 1.2 record.”

Hence, the length field in DTLS represents the number of bytes

stored in the DTLS record’s fragment field. We capture these

requirements in the following formula, where num_bytes is a

function returning the size of its argument (in bytes).

∀r∈R: r.length= num_bytes(r.fragment)

So far, the requirements for record fields were simple and

quantifying over the set of records R with variables r, r′, . . .
sufficed. But there are also RFC requirements that specify

relations between consecutive records or even sequences of

records that a protocol party receives during a session. We then

equip r with a subscript that denotes the record’s position in

the sequence. Thus r1, r2, . . . is the sequence of records in a

session (r1 is the first record, r2 the second, etc.). We can also

quantify over subscripts. As well, for a record ri, its previous

record is obtained as ri−1 and its next as ri+1.

3) Epoch Number: The epoch field is a two-byte unsigned

integer used to distinguish the session keys a record was

encrypted with. The following excerpt from RFC [27, p. 8]

explains how this field should be updated.

The epoch should be initialized with zero, and should be incre-

mented with every ChangeCipherSpec message sent.

For n received records in a DTLS session, we capture this

requirement with the following formula:

∀i∈N,2≤i≤n:

(r1.epoch=0) ∧
(if ri−1.type = change_cipher_spec then ri.epoch = ri−1.epoch+1

else ri.epoch= ri−1.epoch)

This formula specifies that the epoch of the first record is zero

and that for all subsequent records the value of the epoch field

is either one more than the value of the previous record or has

the same value as it, depending on whether the value of the

type field of the previous record is change_cipher_spec or not.

4) Record Sequence Number: The DTLS 1.2 RFC [27] defi-

nes the record sequence_number as a 48-bit unsigned integer for

the purpose of preventing replay attacks. Section II-A quoted

a requirement regarding the uniqueness of the sequence_number

and showed a formula for this requirement (Formula 1). In

the excerpt below, the RFC [27, p. 13,14] additionally requires

rejection of records whose sequence_number values are smaller

than the lowest sequence_number in the current window (i.e.,

the value at the left edge of the window).

Duplicates are rejected through the use of a sliding receive win-

dow. A window size of 64 is preferred and SHOULD be employed

as the default. The "right" edge of the window represents the

highest validated sequence number value received on this session.

Records that contain sequence numbers lower than the "left" edge

of the window are rejected. If the received record falls within the

window and is new, or if the packet is to the right of the window,

then the receiver proceeds to MAC verification.

73

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on June 25,2022 at 13:41:04 UTC from IEEE Xplore. Restrictions apply.

Assuming a max function that returns the maximum of a set of

values, the requirements for sequence number values are given

by the following formula:

∀i,j∈N,1≤i,j≤n,i �=j:

(ri.sequence_number �= rj .sequence_number) ∧
(max({rk.sequence_number−64|1≤k<i}∪{0}) ≤ ri.sequence_number)

The first conjunct is the uniqueness requirement; the second

conjunct specifies the “windowing” requirement.

B. Handshake Layer Requirements

The Handshake layer exchanges a sequence of messages to

establish session keys and cryptographic algorithms. Larger

handshake messages may be split into fragments. An unfrag-

mented message is also regarded as a fragment consisting of

an entire message. The Handshake layer passes to the Record

layer a sequence of fragments, which are encrypted if session

keys have been deployed, and then transmitted as the fragment

fields in a sequence of records. Handshake fragments have

the structure shown below. The fields msg_type and length

struct {

HandshakeType msg_type;

uint24 length;

uint16 message_seq;

uint24 fragment_offset;

uint24 fragment_length;

select (HandshakeType) {

case hello_request: HelloRequest;

case client_hello: ClientHello;

// eight more cases here...

case finished: Finished;

} body;

} Handshake;

indicate the type and length

of the (unfragmented) mes-

sage from which this frag-

ment was derived, whereas

message_seq indicates the or-

der, starting from 0, of that

message in the handshake

interaction. The body field

stores a fragment of the origi-

nal message, whose structure

varies depending on msg_type.

The offset and the length of this fragment are given by the

fragment_offset and fragment_length fields, respectively.

For the Handshake layer, we define formulas over a set M of

received messages, using m to range over individual messages.

1) Handshake Type: The RFC [27, p. 27] specifies the valid

values for msg_type as belonging to the following enumeration:

enum HandshakeType {

hello_request = 0, client_hello, server_hello, hello_verify_request,

certificate = 11, server_key_exchange, certificate_request,

server_hello_done, certificate_verify, client_key_exchange,

finished = 20 };

We can capture the requirement that the valid values for

msg_type are those in the enumeration above with the formula:

∀m∈M : m.msg_type∈{hello_request, client_hello, ..., finished}

We can strengthen this formula if we additionally consider the

ordering of messages imposed by the RFC [27, p. 21]. This

allows us to capture a requirement enforcing correspondence

between the order of a message (given by message_seq) and

its specified msg_type. Formulating this requirement is quite

demanding: the order of a message for a given type may vary

depending on the key exchange the handshake uses, and on the

side receiving the messages (whether it is a client or a server).

To keep the presentation concise, we show the formula for a

handshake that uses PSK (taking the form shown in Fig. 1)

and the side in question is a server. For this particular case,

the requirement can be formulated as follows:

∀m∈ serverPSK(M):

(m.message_seq=0 =⇒ m.msg_type= client_hello) ∧
(m.message_seq=1 =⇒ m.msg_type= client_hello) ∧
(m.message_seq=2 =⇒ m.msg_type= client_key_exchange) ∧
(m.message_seq=3 =⇒ m.msg_type= finished)

The function serverPSK returns the messages from M which the

server receives during PSK handshakes. Similar requirements

can be formulated for clients, as well as for handshakes using

other key exchange algorithms.

Similarly as for records, there are RFC requirements that

specify relations between consecutive messages. We equip m
with a subscript that denotes the message’s position in the se-

quence. Thus m1,m2, . . . is the sequence of received messages

during a session. We can also quantify over subscripts.

2) Message Sequence: The RFC [27, p. 18,19] specifies the

following requirement for message_seq:

The first message each side transmits in each handshake always

has message_seq = 0. Whenever each new message is generated,

the message_seq value is incremented by one. When a message is

retransmitted, the same message_seq value is used.

The excerpt suggests that the value for message_seq equals zero

in the initial message and is incremented with each following

message, except when the same message is retransmitted,

in which case message_seq is unchanged. To capture this

requirement, we must characterize when a message is “the

same” as the previous. We approximate this by equality of

their body fields. This leads to the following formula:

∀i∈N,2≤i≤n:

(m1.message_seq=0) ∧
(if mi.body �=mi−i.body then mi.message_seq=mi−1.message_seq+1

else mi.message_seq=mi−1.message_seq)

In order to capture requirements related to fragmentation

of messages, we continue to assume a sequence m1,m2, . . .
of messages, and additionally assume that message mi is

fragmented into num_fragments(i) fragments. We use mi[j] to

refer to fragment j of message i. The next four requirements

concern fragmentation.

3) Fragment Reassembly: For reassembling (un)fragmented

handshake messages, the RFC [27, p. 20] mandates that:

When a DTLS implementation receives a handshake message

fragment, it MUST buffer it until it has the entire message.

In other words, this RFC excerpt requires that every byte of

the original message should exist in one of the fragments. We

capture the requirement with the aid of fragment_offset and

fragment_length fields in the following formula:

∀i∈N,1≤i≤n, ∀b,0≤b<mi.length, ∃j,1≤j≤num_fragments(i):

mi[j].fragment_offset≤ b<mi[j].fragment_offset+mi[j].fragment_length

4) Unfragmented Message Offset / Length: If a handshake

message fits in a datagram, fragmentation will not take place.

In this case, the RFC [27, p. 20] specifies the following

requirement on fragment_offset and fragment_length:

74

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on June 25,2022 at 13:41:04 UTC from IEEE Xplore. Restrictions apply.

An unfragmented message is a degenerate case with

fragment_offset = 0 and fragment_length = length.

With the help of the num_fragments function, this requirement

can be formulated as follows:

∀i∈N,1≤i≤n: num_fragments(i)= 1 =⇒
(mi.fragment_length=mi.length)∧ (mi.fragment_offset=0)

5) Message Sequence in Fragments: In describing fragmen-

tation, the RFC [27, p. 20] specifies the following requirement:

The sender then creates N handshake messages, all with the same

message_sequence value as the original handshake message.

We can infer that the message_sequence of all fragments should

be equal to the message_sequence of the unfragmented message.

We can capture this requirement using the following formula:

∀i∈N,1≤i≤n, ∀j,1≤j≤num_fragments(i):

mi[j].message_sequence=mi.message_sequence

6) Message Length in Fragments: The RFC [27, p. 20]

makes a similar remark regarding the message_length:

The length field in all messages is the same as the length field of

the original message.

Similarly, we can formulate this requirement as the following:

∀i,∈N,1≤i≤n, ∀j,1≤j≤num_fragments(i): mi[j].length=mi.length

7) Handshake Version: Similar to how records of the DTLS

Record layer contain the DTLS version, there are version fields

in the message bodies of ClientHello, HelloVerifyRequest and

ServerHello messages. Similar to III-A1, we can formulate a

requirement for client_version and server_version.

8) Requirements on Length of Fields: Several handshake

messages contain fields that define the length (in bytes) of other

fields. Such fields occur in the body of a handshake message (we

do not show its structure here). We can capture requirements

for such fields in a similar way as for Record Length formula

in §III-A2. For space reasons, we omit their formulas.

We end this section by mentioning that we have formulated

more input validity requirements for DTLS; we chose to

present only the ones above because they revealed bugs in the

implementations we tested. In our evaluation (§V), we will also

check two input-output requirements; that of Formula (2) and

another one which is similar. We will refer to these requirements

as CH0/HVR and CH2/SH Message Sequence.

IV. IMPLEMENTATION

In this section, we describe our implementation, including

efforts to overcome some obstacles. Our implementation is

structured as follows. First, we prepare the SUT’s code for

symbolic execution (§IV-A). Second, we capture concrete

records of a handshake interaction (§IV-B). For a given

requirement, we then make symbolic the fields of captured

records that participate in it and insert corresponding assertions

and assumptions (§IV-C). The functionality for doing so is

provided in a shared library, based on which a series of

test harnesses were developed, one for each SUT we tested.

The SUT is executed symbolically using KLEE [7]. We then

construct test cases (witnesses) from the values of symbolic

variables that KLEE generates when requirement-violating

behaviors or crashes are detected. These test cases are used to

check if the problems can be reproduced on the unmodified

SUT (§IV-D). We detail these steps below.

A. SUT Preparation

To prepare the SUT for symbolic execution, we first make

modifications to its code to ensure it executes deterministically;

this is necessary to make it respond in the same way during

record capture as during the subsequent symbolic execution.

This involves de-randomization (e.g., in TinyDTLS we modified

the function dtls_fill_random, used to compute client/server

random nonces, to fill a buffer with 1’s instead of a random

value), and disabling retransmissions. Finding the code places

where such changes should be made typically involves a search

for the ‘random’ keyword; the changes themselves are simple.

As mentioned in §II-B, we use completing a DTLS

handshake as a means of determining whether input validity

requirements are violated. To detect when the handshake is near

completion, we insert an assert(false) at the point where the

SUT is expecting Finished. KLEE will terminate the current

path and generate a corresponding sequence of input values

upon executing such a statement. One may wonder why failing

assertions are inserted when Finished is expected and not

after the handshake is completed. The main reason is to

steer symbolic execution away from complicated code used

for decryption and authentication. (Recall from Fig. 1 that

Finished is the first encrypted message that a side receives.)

This does mean, however, that in order to validate the bug

in the unmodified SUT, we have to provide a valid Finished
message outside of symbolic execution. We revisit this matter

in §IV-D.

B. Record Capture

The next step is to capture the records of a DTLS handshake.

We opted for a PSK handshake of the form shown in Fig. 1,

which by design omits certain cryptographic operations (e.g.,

such as those in authentication and key exchange) compared

to handshakes using other key exchange algorithms. This

minimizes the amount of cryptographic code that is executed

symbolically, and also makes symbolic execution faster.

To capture records, we designed a DTLS test program that

starts by instantiating a client and a server. Upon instantiation,

the client generates an initial ClientHello record. Records are

then passed back and forth between the two parties, with each

transmitted record also stored in a separate file. The end result

is a folder containing a file for each record in the handshake.

The client/server interaction is performed over the SUT’s

API. However, DTLS does not have a standardized API. Con-

sequently, the methods for initialization and sending/receiving

record data differ between the SUTs. This made coding the

initial test program time-consuming (i.e., in the range of a few

days) since it required familiarization with each SUT’s API.

We got inspiration from existing demo programs, in particular

from a program used to fuzz the Mbed TLS library [18].

75

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on June 25,2022 at 13:41:04 UTC from IEEE Xplore. Restrictions apply.

C. Symbolic Execution

The test program that captures records is extended to a test
harness for symbolic execution with the aid of the shared
library developed as part of this work. The shared library

contains three types of functions:

1) helper functions (e.g., for loading the records from file),

2) functions to parse DTLS records into pre-defined DTLS

data structures with a structure closely resembling that of

DTLS records presented in §III-A, and

3) functions to make specific fields of records symbolic, and

for forming boolean expressions in assumes and asserts.

By defining these functions in a shared library, we can reuse

their functionality to test different DTLS implementations. This

is done by linking the shared library to a new implementation

and simply calling the functions from the test harness. Minor

adaptations are needed to reflect any new extensions a SUT

may support (present in the ClientHello and ServerHello
extension headers) or different lengths of the variable-length

fields (primarily for the cipher_suites field in ClientHello).

Given a requirement, the test harness is used to symbolically

execute one side (a client or a server). It operates as follows.

Record Loading: The harness first calls the shared library

to load the records received by that side during the captured

handshake and stores them in separate data structures. For ex-

ample, function parse_CH0(uint8_t *buf, CH0 *rec) initializes

a ClientHello0-structured record with data from a buffer.

Making Fields Symbolic: Fields that appear in a require-

ment are made symbolic using klee_make_symbolic. Thereafter,

the assumptions on input in the formalization are inserted

as klee_assume statements, and the assertions on output as

klee_assert statements. To aid this step, our shared library pro-

vides methods for constructing the relevant boolean expressions.

For example, it includes the method:

void epochServer(CH0 *client_hello0, CH2 *client_hello2,

CKE *client_key_exchange, CCS *change_cipher_spec);

which makes the epoch fields in all supplied record entities

symbolic, and assumes the negation of the epoch number

constraint defined in §III-A3. Note that we do not make fields

of Finished records symbolic for performance reasons similar

to those given in §IV-A. This step ends by executing the test

harness symbolically using KLEE.

D. Test Case Construction and Validation

During symbolic execution, for each path explored, KLEE

generates corresponding values for the symbolic variables.

These values are stored in separate files, with sequences leading

to errors named differently, making them easily distinguishable.

From these values and captured records, we build corresponding

test input records which we use to validate that the problem

exists (i.e., the handshake is completed) in the unmodified SUT.

Validation is done by supplying test input records over UDP

to client/server utilities provided with the implementation. For

most requirements, validation can be performed using the input

records generated via symbolic execution on a de-randomized

SUT without assertions and assumptions. This exposes bugs

in the same way as on the unmodified SUT, since the de-

randomization does not affect control flow. One exception

to when validation can be performed in this way is when it

requires some input records (e.g., Finished) to be constructed

from previous ones using cryptographic functions. For these

cases, we use existing DTLS libraries (TLS-Attacker [34] and

DTLS-Fuzzer [17]) to generate test cases which expose the

requirement violation.

V. EVALUATION

In parallel with extracting requirements for DTLS based on

its RFC and its errata, we looked for previously reported bugs

for DTLS implementations. We came across CVE-2014-0195,

an exploitable security vulnerability of OpenSSL, which is

explained in detail in this blog [38]. The bug is in OpenSSL’s

function for reassembling fragmented messages, and prompted

us to implement the Handshake layer requirements regarding

fragmentation (§III-B3 to §III-B6). One of the latest versions

with this vulnerability is OpenSSL 1.0.1f. So we took its

code and tested it. We were able to expose the vulnerability

very quickly. When using OpenSSL as a server, the bug,

which violates the Message Length requirement (§III-B6),

was detected in just 20 seconds, and when using OpenSSL

as a client in 38 seconds. In both cases, KLEE version 2.2

explored just eight paths in OpenSSL’s code. Out of curiosity,

we also checked the code of OpenSSL 1.0.1f for other

problems, and discovered, again in less than 20 seconds, two

minor non-conformance issues in its code. Both issues were

previously unknown and concern not checking the DTLS

version requirements (§III-A1 and §III-B7). This warm-up

experiment, and in particular exposing a (known but serious)

security vulnerability without much effort and very quickly,

convinced us of the power and promise of our methodology.

So we were eager to find out what we could discover in newer,

and hopefully more robust, DTLS implementations. We present

these results in the remainder of this section.

SUTs: For our evaluation, we chose a total of four

different DTLS implementations. Two of them, OpenSSL and

Mbed TLS, are well-known and widely used. For OpenSSL,

we used 3.0.0-alpha12, the most recent pre-release of version

3.0.0 at the time of our evaluation. For Mbed TLS, we used

version 2.22.0. The other two implementations are variants of

TinyDTLS, a lightweight DTLS implementation targeting IoT

devices. The first variant, which we will denote as TinyDTLSE ,

is hosted and maintained by the Eclipse IoT project. The second

variant, which we will denote as TinyDTLSC , was branched

out from Eclipse’s IoT project, developed independently ever

since, and is used in the Contiki-NG operating system. For

both TinyDTLS variants, we used the latest commits of their

development branches (7068882 and 53a0d97, respectively) at

the time our evaluation was conducted. Because the ‘develop’

branch of Eclipse’s TinyDTLS does not support Handshake

layer fragmentation, we used the most recent commit (94205ff)

of its ‘handshake_fragmentation’ branch to test TinyDTLSE’s

support for DTLS’s handshake fragmentation requirements.

76

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on June 25,2022 at 13:41:04 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Number and classes of bugs found in the SUTs we used.

OpenSSL Mbed TLS TinyDTLSE TinyDTLSC

1.0.1f 3.0.0-alpha12 2.22.0 7068882 94205ff 53a0d97

Vulnerability 1 1 – 3 +0 2
Other – – – 3 +1 1
Non-conformance 2 2 3 9 +1 10

Summary of Results: Table I shows a breakdown of the

total of 36 bugs (not counting the three in OpenSSL 1.0.1f)

that we detected across the five SUTs that we consider in our

evaluation. In the table, we use the notation +N for the bugs

in the handshake fragmentation branch of TinyDTLSE to refer

to the additional bugs that this branch contains compared to

the develop branch (and so that we do not count the same bugs

twice). All these bugs have been reported to the developers of

these DTLS implementations, and most have been confirmed

and corrected by now. Also, note that we detected bugs in

all the DTLS implementations we considered. In Table I, we

classify these bugs into vulnerabilities, non-conformance issues,

and use “Other” for bugs that do not fall clearly into the other

two classes.

In the next two subsections, we describe the bugs that we

detected in OpenSSL and in Eclipse’s TinyDTLS implemen-

tation, and provide measurements about our experiments. We

omit detailed descriptions of the three non-conformance bugs

detected in Mbed TLS, and of the thirteen bugs detected in

TinyDTLSC because they are similar to those in TinyDTLSE .

A. Bugs in OpenSSL

On OpenSSL 3.0.0-alpha12, we detected a serious vulnera-

bility and a non-conformance bug (cf. Table I).

The vulnerability, which involves accessing an out-of-bounds

pointer and crashing the SUT, is detected in less than two

minutes both when using OpenSSL as a server and as a client

(cf. Tables II and III), with the help of the Handshake Type

requirement (§III-B1). The vulnerability has been reported to

the OpenSSL developers as issue 14906 and quickly fixed. It

occurs as follows: Under normal handshake, the client initiates

a handshake by sending a ClientHello0 (CH0) message to

the server. To trigger the vulnerability, the (malicious) client

instead starts the handshake by sending a CH0 message which

is however tagged with msg_type = finished. This fools the

server, which mistakenly tries to process a Finished message

and access the non-existing at this point cipher suite elements

(which would have been agreed by the client and the server

if the handshake had been properly done and the Finished
message would have been processed when its time had come).

This causes the server to crash. In a similar scenario, during a

handshake, if the server responds to a ClientHello message with

a Finished message, the client crashes for the same reason.

This is what the OpenSSL developers said about this bug:

“Good catch! Fortunately this only affects the dev branch and not 1.1.1

(otherwise this would have been a CVE).” We mention in passing

that the fix for this issue triggered a general discussion among

developers about revisiting how OpenSSL 3.0.0 manages

transcript hashes and that its state machine should be redesigned.

TABLE II: Results using the OpenSSL 3.0.0-alpha12 server instance as SUT.

Requirement Bug Paths Time Participating Records

Record Version � 4 1m19s CH0, CH2, CKE, CCS
Record Length 492 1h56m01s CH0, CH2, CKE, CCS
Epoch Number 10 2m02s CH0, CH2, CKE, CCS
Record Sequence Number 74 21m05s CH2, CKE, CCS

Handshake Type � 6 1m10s CH0, CH2, CKE
Message Sequence 8 1m18s CH0, CH2, CKE
Fragment Reassembly 51 4m46s CKE
Unfragmented Message Offset 3 59s CH0, CH2, CKE
Unfragmented Message Length ? 5579 � CH0, CH2, CKE
Message Sequence in Fragments 16 1m56s CKE
Handshake Version � 8 1h18m36s CH0, CH2
Fragment Length 272 31m43s CH0, CH2, CKE
Cookie Length 182 40m13s CH0, CH2
Session ID Length 646 1h13m20s CH0, CH2

CH0/HVR Message Sequence 3 1m04s HVR
CH2/SH Message Sequence 4 1m13s SH

TABLE III: Results using OpenSSL 3.0.0-alpha12 client instance as SUT.

Requirement Bug Paths Time Participating Records

Record Version � 5 1m47s HVR, SH, SHD, CCS
Record Length 259 29m18s HVR, SH, SHD, CCS
Epoch Number 10 2m28s HVR, SH, SHD, CCS
Record Sequence Number 210 1h23m41s HVR, SH, SHD, CCS

Handshake Type � 18 1m58s HVR, SH, SHD
Message Sequence 19 1m58s HVR, SH, SHD
Fragment Reassembly 1076 2h22m21s SH
Unfragmented Message Offset 3 1m03s HVR, SH, SHD
Unfragmented Message Length ? 5499 � HVR, SH, SHD
Message Sequence in Fragments 23 2m26s SH
Handshake Version � 6 43m49s HVR, SH
Fragment Length 112 10m28s HVR, SH, SHD
Cookie Length 21 6m34s HVR
Session ID Length 3 1m00s SH

This provides some evidence that the bugs exposed by our

methodology are often quite deep.

Besides this security bug, we also detected two non-

conformance bugs. The Record Version and the Handshake

Version requirements (§III-A1 and §III-B7) of the RFC revealed

that OpenSSL did not properly check for the version fields

when the underlined records in Tables II and III were processed.

Let us also describe the information in the tables of this and

the next subsection. Each of their rows shows the requirement

which is checked, whether it revealed a vulnerability (�), a non-

conformance bug (�) or was inconclusive (?) due to timeout (�),

the number of different paths that KLEE explored and the time

this required, and the shorthand for the participating records

of the DTLS protocol that the requirement involves. Records

that expose the bug(s) that were detected are shown in red

color (for vulnerabilities) or underlined (for non-conformances).

Regarding the time that symbolic execution requires, we notice

that most requirements are checked quite fast (in a few minutes

when testing OpenSSL 3.0.0-alpha12), but there also exist

requirements where KLEE needs to examine a significant

number of paths of the SUT and the tests take more than one

to two hours to complete or even time out after running for a

day. We also note that the time that checking the requirements

requires is not proportional to the number of execution paths

that KLEE explores; for example, notice the Handshake Version

rows in Tables II and III and contrast them with other rows

in these two tables. The Handshake Version experiment takes

77

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on June 25,2022 at 13:41:04 UTC from IEEE Xplore. Restrictions apply.

considerably longer despite involving a relatively small number

of paths. This is due to the fact that unlike other tested

implementations, OpenSSL by default, computes the master

secret using a hash over the contents of prior messages. These

contents include symbolic fields (client_version in CH0 and

CH2), causing KLEE to symbolically execute complicated hash

code. On a general note, the experiments on OpenSSL 3.0.0-

alpha12 were by far the most time-consuming ones among the

DTLS implementations we tested.

B. Bugs in TinyDTLS

On the two TinyDTLSE branches we tested, we detected a

total of seventeen bugs. We omit the details of the ten non-

conformance bugs, and describe only the three vulnerabilities

and the four “Other” errors (cf. Table I).

The vulnerabilities we detected were reported as issues 59,

69, and 74. In short, they are as follows: (1) When a client

receives a ServerHello (SH) where the length field has a value

smaller than the actual size of the record, the variable that

represents the record size wraps around. Later this variable

is used to read the extensions contained in the SH, causing

the client to crash. (2) When a malformed ClientHello0 with

length = 0 is sent to the server, a size variable used when

the server is generating the cookie wraps around. This causes

the server to try to compute an HMAC over a large portion

of memory using the size variable, which in turn crashes the

server. (3) If a ClientHello2 message has an invalid value for

its version field, the server fails to retrieve the cookie from

the message. A flaw in the handling of this failure, in turn,

causes the server to proceed with the handshake. This makes

TinyDTLS servers susceptible to Denial-of-Service attacks.

The four “Other” bugs are also quite serious, but we do

not classify them as vulnerabilities because their consequences

are unclear; e.g., they do not cause crashes. They have been

reported as issues 54, 55, 57 and 70. In short, we have

detected: (1) A memory over-read when the client or the

server is reassembling a fragmented message, occurring if the

fragment_length is smaller than the size of the actual fragment.

(2) A client accessing an invalid memory past the boundary of

the fragment when the server sends a fragmented ServerHello to

the client where some of the handshake fields are not present in

the fragment. (3) An over-shift taking place when a client or a

server receives a record with a sequence_number greater than 32.

(4) Another memory over-read when a HelloVerifyRequest
contains a 16-byte cookie, but cookie_length is greater than 16.

It is interesting to point out that, for some of these bugs, it

took up to three pull request attempts before the root of the

problem was identified and fixed. Each time, we were able to

trigger the bug in another way and show to the developers that

their fixes were insufficient. The fact that we had an automatic

way to test the version of TinyDTLSE with the proposed fix

was very handy. Finally, note that testing TinyDTLS is very

fast for all but one requirement (Record Length); cf. the times

in Tables IV and V.

TABLE IV: Results using TinyDTLSE server instance as SUT.

Requirement Bug Paths Time Participating Records

Record Version 15 6s CH0, CH2, CKE, CCS
Record Length 33 19s CH0, CH2, CKE, CCS
Epoch Number � 11 4s CH0, CH2, CKE, CCS
Record Sequence Number �/� 12 3s CH2, CKE, CCS

Handshake Type 35 14s CH0, CH2, CKE
Message Sequence � 11 11s CH0, CH2, CKE
Fragment Reassembly � 300 1m05s CKE
Unfragmented Message Offset � 1 5s CH0, CH2, CKE
Unfragmented Message Length �/� 7 7s CH0, CH2, CKE
Message Sequence in Fragments � 4 2s CKE
Handshake Version � 2 12s CH0, CH2
Fragment Length �/� 7 4s CH0, CH2, CKE
Cookie Length � 6 8s CH0, CH2
Session ID Length � 32 16s CH0, CH2

CH0/HVR Message Sequence � 2 7s HVR
CH2/SH Message Sequence � 3 9s SH

TABLE V: Results using TinyDTLSE client instance as SUT.

Requirement Bug Paths Time Participating Records

Record Version 65 34s HVR, SH, SHD, CCS
Record Length � 112 2h06m13s HVR, SH, SHD, CCS
Epoch Number 21 6s HVR, SH, SHD, CCS
Record Sequence Number �/� 146 58s HVR, SH, SHD, CCS

Handshake Type � 256 1m36s HVR, SH, SHD
Message Sequence � 23 15s HVR, SH, SHD
Fragment Reassembly � 726 2m55s SH
Unfragmented Message Offset � 1 2s HVR, SH, SHD
Unfragmented Message Length � 1 2s HVR, SH, SHD
Message Sequence in Fragments � 4 2s SH
Handshake Version � 2 3s HVR, SH
Fragment Length � 1 2s HVR, SH, SHD
Cookie Length � 18 19s HVR
Session ID Length � 4 7s SH

VI. RELATED WORK

Symbolic execution [19] was introduced already in the 70’s.

In the last 15 years, improvements in tool implementations [7],

[12] have made symbolic execution a powerful software testing

technique. For testing network protocols, several works (e.g.,

KleeNet [29], SymNet [28], etc.), search for issues arising

during the joint execution of several protocol parties combined

with a test environment. Symbolic execution is employed to

explore as many code paths as possible within some time budget.

Since each input is generated by another party, these approaches

mainly detect interoperability issues, and have limited power

to detect flaws in processing of adversarial (non-valid) inputs.

SYMBEXNET [32] jointly executes the protocol parties

symbolically to generate test inputs that explore as many

code paths as possible in a given time budget. The gene-

rated test inputs are then replayed against the SUT, while

monitoring its behavior to check whether any requirement

extracted from the specification is violated. In contrast to

our approach, SYMBEXNET symbolically executes the SUT

without first augmenting it with assumptions or assertions that

check for requirement violations. As a consequence, it may

miss violations corresponding to paths which are exercised

by both violating and non-violating inputs. To understand

why, consider the Handshake Version requirement (§III-B7),

which constrains the client_version field to a value in the set

{DTLS1.0, DTLS1.2}. MbedTLS checks this requirement incorrectly;

78

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on June 25,2022 at 13:41:04 UTC from IEEE Xplore. Restrictions apply.

it checks whether client_version is in a range which also

includes the invalid version DTLS1.1. As a result, the same

code path can be exercised by both valid and invalid version

fields. For such a path, symbolic execution without inserted

assumptions will generate a single test case which may

or may not expose the bug (i.e. it may or may not have

client_version set to DTLS1.1). In contrast, the assumptions used

in our approach specifically address this, guiding symbolic

execution to generate test cases that expose violations whenever

possible. Similar examples include the missing checks for

Message Offset/Length (§III-B4), Fragment Length, and Epoch

(§III-A3) in TinyDTLS. To validate whether symbolic execution

unguided by assumptions as used in SYMBEXNET could indeed

miss such bugs, we symbolically executed MbedTLS and

TinyDTLS without any assumptions or assertions. In all cases,

none of the generated test inputs exposed the corresponding

requirement violation.

Pedrosa et al. [24] use symbolic execution to search for

interoperability issues by characterizing messages that during a

session can be sent by one party but rejected as non-compliant

by the other. Wen et al. [37] apply symbolic execution to

stateful protocol implementations by first employing model

learning (L∗) to extract a finite state machine, whose states can

be considered as an additional input in symbolic execution.

Chau et al. [9], [10] use symbolic execution for a form

of differential testing of libraries that classify certificate

chains as valid or invalid. Using symbolic execution, path

constraints for the “valid” and “invalid” outcomes are generated.

Path constraints from different implementations are compared,

and discrepancies are investigated. This approach is suitable

for libraries that implement an input-output function for

which requirements are difficult to formalize precisely. In

our approach, we can formalize and check each requirement

individually: violations can detected and diagnosed directly

when they occur, and there is no need to compare potentially

complex test data from different implementations.

Chen et al. [11] automate the extraction of requirements

from the X.509 RFC [4] by extracting sentences with keywords,

such as “MUST”, “SHOULD”, etc. From each requirement,

“valid” and “invalid” field values are constructed, with manual

assistance. These are combined into a compact test suite, which

is then used in differential black-box testing. As we have noted

in §II, in the case of DTLS, some requirements are clarified

and/or corrected in errata, which are documents distinct from

the protocol’s RFC. It is unclear how requirement extraction

can be automated in such a setting.

There is a rich body of work on protocol conformance testing,

with model-based testing (MBT) [6], [35] and property-based

testing (PBT) [1], [20], [21] as closely related approaches.

An abstract model of the protocol is manually constructed or

learned [33], and is used as basis for generating test inputs

that are supplied, typically in black-box testing. Many different

formalisms for expressing abstract models and specifications

have been suggested [22], [36]. PBT is often simpler to perform

than MBT, due to the high-level infrastructure and built-in

mechanisms for input generation that PBT tools provide. Our

approach is white-box, which gives more power to the search

for specific inputs and code paths that expose bugs.

State fuzzing is a black-box technique for detecting flaws in

the control logic for handling the order of packets. Such flaws

may be exploited, e.g., by tricking an implementation to bypass

an authentication step. State fuzzing has discovered several

flaws in TLS and DTLS implementations [3], [13], [16], [31].

It can be regarded as complementary to our approach in that

it tests different orderings of packet types, whereas we search

for requirement violations and bugs in handling packet fields

under a specific ordering.

VII. REFLECTIONS AND CONCLUDING REMARKS

In this paper, we have described a test methodology and

presented our experiences from using symbolic execution to

detect specification violations and security vulnerabilities in

implementations of the DTLS network protocol. A central

idea in our methodology is to formulate requirements over the

processing of packets in a session and let these requirements

guide the symbolic execution to search for code paths and

corresponding sequences of inputs that expose requirement

violations. This allows testing the SUT with a broad range of

input sequences, both benign and adversarial.

When testing a code base of significant size and complexity,

a challenge for all techniques based on symbolic execution, and

to those using KLEE in particular, is scalability. Our experience

is that one effective way to achieve scalability is to test for

violation of only one requirement at a time, and to make

symbolic only the parts of the input that are relevant for the

tested requirement. Naturally, this requires attentiveness, and

has the drawback that it can miss inputs that can be produced

only when multiple requirements are in effect.

If the speed of symbolic execution is slow due to some

easily identifiable reason (e.g., the execution of cryptographic

functions), one can try to find a way to keep away from such

trouble when the requirement to check does not depend on

the functionality of the corresponding code. This is what we

described in §IV-B: we focused on handshakes with a pre-

shared key (PSK) instead of testing the DTLS implementations

using handshakes based on more complicated encryption

algorithms. Of course, a downside is that testing will not

detect bugs in the code which is not executed; it will only

check violations of specification requirements.

When testing several implementations of the same protocol,

significant effort can be saved by packaging as much reusable

functionality as possible into a shared library, as we describe

in §IV-C. By making the different implementations take input

with a common structure, as we did for DTLS records, many

operations on input data, such as making parts of input symbolic

and adding assumptions corresponding to requirements, can be

implemented in such a shared library.

We have evaluated our methodology by checking four widely-

used DTLS implementations against the RFC for DTLS. We

were able to quickly expose a known CVE in an older version

of OpenSSL, and discover numerous new vulnerabilities, non-

conformance issues and subtle errors in all implementations.

79

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on June 25,2022 at 13:41:04 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] T. Arts, J. Hughes, J. Johansson, and U. Wiger, “Testing telecoms
software with Quviq QuickCheck,” in Proceedings of the 2006 ACM
SIGPLAN Workshop on Erlang. New York, NY, USA: ACM, 2006, pp.
2–10. [Online]. Available: http://doi.acm.org/10.1145/1159789.1159792

[2] H. Asadian, P. Fiterău-Broştean, B. Jonsson, and K. Sagonas, “Replication
material for the ICST 2022 paper: Applying symbolic execution to test
implementations of a network protocol against its specification,” Apr.
2022. [Online]. Available: https://doi.org/10.5281/zenodo.5929867

[3] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue, “A
messy state of the union: Taming the composite state machines of
TLS,” Commun. ACM, vol. 60, no. 2, pp. 99–107, Feb. 2017. [Online].
Available: https://doi.org/10.1145/3023357

[4] S. Boeyen, S. Santesson, T. Polk, R. Housley, S. Farrell, and D. Cooper,
“Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” RFC 5280, May 2008. [Online].
Available: https://rfc-editor.org/rfc/rfc5280.txt

[5] S. Bradner, “Key words for use in RFCs to Indicate Requirement
Levels,” RFC 2119, Mar. 1997. [Online]. Available: https://www.rfc-
editor.org/info/rfc2119

[6] M. Broy, B. Jonsson, J. Katoen, M. Leucker, and A. Pretschner,
Eds., Model-Based Testing of Reactive Systems, Advanced Lectures,
ser. LNCS, vol. 3472. Springer, 2005. [Online]. Available: https:
//doi.org/10.1007/b137241

[7] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI ’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 209–224. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855756

[8] M. M. Carvalho, J. DeMott, R. Ford, and D. A. Wheeler, “Heartbleed
101,” IEEE Secur. Priv., vol. 12, no. 4, pp. 63–67, 2014. [Online].
Available: https://doi.org/10.1109/MSP.2014.66

[9] S. Y. Chau, O. Chowdhury, M. E. Hoque, H. Ge, A. Kate, C. Nita-Rotaru,
and N. Li, “SymCerts: Practical symbolic execution for exposing
noncompliance in X.509 certificate validation implementations,” in
2017 IEEE Symposium on Security and Privacy, ser. SP 2017. IEEE
Computer Society, May 2017, pp. 503–520. [Online]. Available:
https://doi.org/10.1109/SP.2017.40

[10] S. Y. Chau, M. Yahyazadeh, O. Chowdhury, A. Kate, and
N. Li, “Analyzing semantic correctness with symbolic execution:
A case study on PKCS#1 v1.5 signature verification,” in 26th
Annual Network and Distributed System Security Symposium,
ser. NDSS 2019. The Internet Society, Feb. 2019. [Online].
Available: https://www.ndss-symposium.org/ndss-paper/analyzing-
semantic-correctness-with-symbolic-execution-a-case-study-on-pkcs1-
v1-5-signature-verification/

[11] C. Chen, C. Tian, Z. Duan, and L. Zhao, “RFC-directed differential
testing of certificate validation in SSL/TLS implementations,” in
Proceedings of the 40th International Conference on Software
Engineering, ser. ICSE 2018, M. Chaudron, I. Crnkovic, M. Chechik,
and M. Harman, Eds. ACM, May–Jun. 2018, pp. 859–870. [Online].
Available: https://doi.org/10.1145/3180155.3180226

[12] V. Chipounov, V. Kuznetsov, and G. Candea, “The S2E platform:
Design, implementation, and applications,” ACM Trans. Comput.
Syst., vol. 30, no. 1, pp. 2:1–2:49, 2012. [Online]. Available:
https://doi.org/10.1145/2110356.2110358

[13] J. de Ruiter and E. Poll, “Protocol state fuzzing of TLS implementations,”
in 24th USENIX Security Symposium. USENIX Association, Aug. 2015,
pp. 193–206. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/de-ruiter

[14] T. Dierks and E. Rescorla, “The transport layer security (TLS) protocol
version 1.1,” RFC 4346, Internet Engineering Task Force, Apr. 2006.
[Online]. Available: http://www.ietf.org/rfc/rfc4346.txt

[15] ——, “The transport layer security TLS protocol version 1.2,” RFC 5246,
Aug. 2008. [Online]. Available: http://www.rfc-editor.org/rfc/rfc5246.txt

[16] P. Fiterău-Broştean, B. Jonsson, R. Merget, J. de Ruiter, K. Sagonas,
and J. Somorovsky, “Analysis of DTLS implementations using
protocol state fuzzing,” in 29th USENIX Security Symposium (USENIX
Security 20). USENIX Association, Aug. 2020, pp. 2523–2540.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity20/
presentation/fiterau-brostean

[17] P. Fiterău-Broştean, B. Jonsson, K. Sagonas, and F. Tåquist, “DTLS-
Fuzzer: A DTLS protocol state fuzzer,” in 15th IEEE International
Conference on Software Testing, Verification and Validation, ser. ICST
2022. IEEE Computer Society, Apr. 2022.

[18] F. Foerg, “Fuzzing the Mbed TLS library,” Sep. 2015. [Online].
Available: https://blog.gdssecurity.com/labs/2015/9/21/fuzzing-the-mbed-
tls-library.html

[19] J. C. King, “Symbolic execution and program testing,” Commun.
ACM, vol. 19, no. 7, pp. 385–394, Jul. 1976. [Online]. Available:
https://doi.org/10.1145/360248.360252

[20] A. Löscher and K. Sagonas, “Targeted property-based testing,” in
Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA 2017. New
York, NY, USA: ACM, 2017, pp. 46–56. [Online]. Available:
http://doi.acm.org/10.1145/3092703.3092711

[21] A. Löscher, K. Sagonas, and T. Voigt, “Property-based testing
of sensor networks,” in Sensing, Communication, and Networking,
12th Annual IEEE International Conference on, ser. SECON
’15. IEEE, Jun. 2015, pp. 100–108. [Online]. Available: https:
//doi.org/10.1109/SAHCN.2015.7338296

[22] K. L. McMillan and L. D. Zuck, “Formal specification and testing of
QUIC,” in Proceedings of the ACM Special Interest Group on Data
Communication, ser. SIGCOMM 2019. ACM, Sep. 2019, pp. 227–240.
[Online]. Available: https://doi.org/10.1145/3341302.3342087

[23] B. Möller, T. Duong, and K. Kotowicz, “This POODLE bites:
exploiting the SSL 3.0 fallback,” 2014. [Online]. Available: https:
//www.openssl.org/~bodo/ssl-poodle.pdf

[24] L. Pedrosa, A. Fogel, N. Kothari, R. Govindan, R. Mahajan, and T. D.
Millstein, “Analyzing protocol implementations for interoperability,”
in 12th USENIX Symposium on Networked Systems Design and
Implementation, ser. NSDI 15. USENIX Association, May 2015, pp.
485–498. [Online]. Available: https://www.usenix.org/conference/nsdi15/
technical-sessions/presentation/pedrosa

[25] V.-T. Pham, M. Böhme, and A. Roychoudhury, “AFLNET: A
greybox fuzzer for network protocols,” in IEEE 13th International
Conference on Software Testing, Validation and Verification, ser.
ICST 2020. IEEE, Oct. 2020, pp. 460–465. [Online]. Available:
https://ieeexplore.ieee.org/document/9159093

[26] E. Rescorla and N. Modadugu, “Datagram transport layer security,” RFC
4347, Internet Engineering Task Force, Apr. 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4347.txt

[27] ——, “Datagram transport layer security version 1.2,” RFC 6347,
pp. 1–32, Jan. 2012. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc6347.txt

[28] R. Sasnauskas, P. Kaiser, R. L. Jukic, and K. Wehrle, “Integration testing
of protocol implementations using symbolic distributed execution,” in
20th IEEE International Conference on Network Protocols, ser. ICNP
2012. IEEE Computer Society, Oct.-Nov. 2012, pp. 1–6. [Online].
Available: https://doi.org/10.1109/ICNP.2012.6459940

[29] R. Sasnauskas, O. Landsiedel, M. H. Alizai, C. Weise, S. Kowalewski,
and K. Wehrle, “KleeNet: discovering insidious interaction bugs
in wireless sensor networks before deployment,” in Proceedings
of the 9th International Conference on Information Processing in
Sensor Networks, ser. IPSN 2010, T. F. Abdelzaher, T. Voigt, and
A. Wolisz, Eds. ACM, Apr. 2010, pp. 186–196. [Online]. Available:
https://doi.org/10.1145/1791212.1791235

[30] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (CoAP),” RFC 7252, Jun. 2014. [Online]. Available:
https://rfc-editor.org/rfc/rfc7252.txt

[31] J. Somorovsky, “Systematic fuzzing and testing of TLS libraries,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. New York, NY,
USA: ACM, 2016, pp. 1492–1504. [Online]. Available: http:
//doi.acm.org/10.1145/2976749.2978411

[32] J. Song, C. Cadar, and P. R. Pietzuch, “SYMBEXNET: Testing network
protocol implementations with symbolic execution and rule-based
specifications,” IEEE Trans. Software Eng., vol. 40, no. 7, pp. 695–709,
2014. [Online]. Available: https://doi.org/10.1109/TSE.2014.2323977

[33] M. Tappler, B. K. Aichernig, and R. Bloem, “Model-based testing
IoT communication via active automata learning,” in Software Testing,
Verification and Validation, (ICST) 2017 IEEE International Conference
on. IEEE Computer Society, Mar. 2017, pp. 276–287. [Online].
Available: https://doi.org/10.1109/ICST.2017.32

80

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on June 25,2022 at 13:41:04 UTC from IEEE Xplore. Restrictions apply.

[34] “TLS-Attacker,” https://github.com/tls-attacker/TLS-Attacker, Online;
accessed 12-December-2021.

[35] M. Utting and B. Legeard, Practical Model-Based Testing - A Tools
Approach, 1st ed. Morgan Kaufmann, Nov. 2006. [Online]. Available:
http://www.elsevierdirect.com/product.jsp?isbn=9780123725011

[36] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, and
L. Nachmanson, “Model-based testing of object-oriented reactive systems
with Spec Explorer,” in Formal Methods and Testing, An Outcome of the
FORTEST Network, Revised Selected Papers, ser. LNCS, R. M. Hierons,
J. P. Bowen, and M. Harman, Eds., vol. 4949. Springer, 2008, pp. 39–76.

[Online]. Available: https://doi.org/10.1007/978-3-540-78917-8_2

[37] S. Wen, Q. Meng, C. Feng, and C. Tang, “A model-guided
symbolic execution approach for network protocol implementations and
vulnerability detection,” PloS one, vol. 12, no. 11, p. e0188229, 2017.
[Online]. Available: https://doi.org/10.1371/journal.pone.0188229

[38] M. Yason, “CVE-2014-0195: Adventures in OpenSSL’s DTLS fragmen-
ted land,” Dec. 2014. [Online]. Available: https://securityintelligence.
com/cve-2014-0195-adventures-in-openssls-dtls-fragmented-land/

[39] M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/afl/,
2013.

81

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on June 25,2022 at 13:41:04 UTC from IEEE Xplore. Restrictions apply.

