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Combining Model Learning and Model Checking
to Analyze TCP Implementations

Abstract. We combine model learning and model checking in a chal-
lenging case study involving Linux, Windows and FreeBSD implemen-
tations of TCP. We use model learning to infer models of different soft-
ware components and then apply model checking to fully explore what
may happen when these components (e.g. a Linux client and a Windows
server) interact. Our analysis reveals several instances in which TCP
implementations do not conform to their RFC specifications.

1 Introduction

Our society has become completely dependent on network and security proto-
cols such as TCP/IP, SSH, TLS, BlueTooth, and EMV. Protocol specification or
implementation errors may lead to security breaches or even complete network
failures, and hence many studies have applied model checking to these protocols
in order to find such errors. Since exhaustive model checking of protocol im-
plementations is usually not feasible [23], two alternative approaches have been
pursued in the literature. This article proposes a third approach.

A first approach, followed in many studies, is to use model checking for analysis
of models that have been handcrafted starting from protocol standards. Through
this approach many bugs have been detected, see e.g. [11,25,41,20,8,27]. However,
as observed in [10], the relationships between a handcrafted model of a protocol
and the corresponding standard are typically obscure, undermining the reliability
and relevance of the obtained verification results. In addition, implementations
of protocols frequently do not conform to their specification. Bugs specific to
an implementation can never be captured using this way of model checking. For
instance, [17] shows that both the Windows 8 and Ubuntu 13.10 implementations
of TCP violate the standard. In [37], new security flaws were found in three of the
TLS implementations that were analyzed, all due to violations of the standard.
In [13] and [42] it was shown that implementations of a protocol for Internet
banking and of SSH, respectively, violate their specification.

A second approach has been pioneered by Musuvathi and Engler [30]. Using the
CMC model checker [31], they model checked the “hardest thing [they] could
think of”, the Linux kernel’s implementation of TCP. Their idea was to run
the entire Linux kernel as a CMC process. Transitions in the model checker
correspond to events like calls from the upper layer, and sending and receiv-
ing packets. Each state of the resulting CMC model is around 250 kilobytes.
Since CMC cannot exhaustively explore the state space, it focuses on exploring
states that are the most different from previously explored states using various
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heuristics and by exploiting symmetries. Through their analysis, Musuvathi and
Engler found four bugs in the Linux TCP implementation. One could argue that,
according to textbook definitions of model checking [16,7], what Musuvathi and
Engler do is not model checking but rather a smart form of testing.

The approach we explore in this paper uses model learning. Model learning, or
active automata learning [40,6,1], is emerging as a highly effective technique to
obtain models of protocol implementations. In fact, all the standard violations
reported in [17,37,13,42] have been discovered (or reconfirmed) with the help
of model learning. The goal of model learning is to obtain a state model of a
system by providing inputs to and observing outputs from a black-box system.
This approach makes it possible to obtain models that fully correspond to the
observed behavior of the implementation. Since the models are derived from a
finite number of observations, we can (without additional assumptions) never
be sure that they are correct: even when a model is consistent with all the
observations up until today, we cannot exclude the possibility that there will
be a discrepancy tomorrow. Nevertheless, through application of conformance
testing algorithms [26], we may increase confidence in the correctness of the
learned models. In many recent studies, state-of-the-art tools such as LearnLib
[40] routinely succeeded to learn correct models efficiently. In the absence of a
tractable white-box model of a protocol implementation, a learned model is often
an excellent alternative that may be obtained at relatively low cost.

The main contribution of this paper is the combined application of model check-
ing, model learning and abstraction techniques in a challenging case study in-
volving Linux, Windows and FreeBSD implementations of TCP. Using model
learning and abstraction we infer models of different software components and
then apply model checking to fully explore what may happen when these com-
ponents (e.g. a Linux client and a Windows server) interact.

The idea to combine model checking and model learning was pioneered in [34],
under the name of black box checking. In [29], a similar methodology was intro-
duced to use learning and model checking to obtain a strong model-based test-
ing approach. Following [34,29], model checkers are commonly used to analyze
models obtained via automata learning. However, these applications only con-
sider specifications of a single system component, and do not analyze networks
of learned models. Our results considerably extend previous work on learning
fragments of TCP by [17] since we have (1) added inputs corresponding to calls
from the upper layer, (2) added transmission of data, (3) inferred models of TCP
clients in addition to servers, and (4) learned models for FreeBSD in addition
to Windows and Linux. In order to obtain tractable models we use the theory
of abstractions from [2], which in turn is inspired by earlier work on predicate
abstraction [15,28]. Whereas in previous studies on model learning the abstrac-
tions were implemented by ad-hoc Java programs, we define them in a more
systematic manner. We provide a language for defining abstractions, and from
this definition we automatically generate mapper components for learning and
model checking.
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The main advantage of our method compared to approaches in which models are
handcrafted based on specifications is that we analyze the “real thing” and may
find “bugs” in implementations. In fact, our analysis revealed several instances
in which TCP implementations do not conform to the standard. Compared to
the white-box approach of Musuvathi and Engler [30], our black-box method
has two advantages: (1) we obtain explicit component models that can be fully
explored using model checking, and (2) our method appears to be easier to apply
and is more flexible. For instance, once we had learned models of the Linux
implementation of TCP, it was easy for us to extend our results to the setting
of Windows and FreeBSD. A similar extension would be a major effort in the
approach of [30] and even impossible without direct access to the code.

2 Background on model learning

Mealy machines During model learning, we represent protocol entities as
Mealy machines. A Mealy machine is a tuple M = 〈I,O,Q, q0,→〉, where I,
O, and Q are finite sets of input actions, output actions, and states, respectively,
q0 ∈ Q is the initial state, and →⊆ Q × I × O × Q is the transition relation.

We write q
i/o−−→ q′ if (q, i, o, q′) ∈→. We assume M to be input enabled (or

completely specified) in the sense that, for each state q and input i, there is a

transition q
i/o−−→ q′, for some o and q′. We call M deterministic if for each state

q and input i there is exactly one output o and one state q′ such that q
i/o−−→ q′.

We call M weakly deterministic if for each state q, input i and output o there

is exactly one state q′ with q
i/o−−→ q′.

Let σ = i1 · · · in ∈ I∗ and ρ = o1 · · · on ∈ O∗. Then ρ is an observation triggered
by σ in M, notation ρ ∈ AM(σ), if there are q0 · · · qn ∈ Q∗ such that q0 = q0

and qj−1
ij/oj−−−→ qj , for all j with 0 ≤ j < n. If M and M′ are Mealy machines

with the same inputs I and outputs O, then we write M ≤ M′ if, for each
σ ∈ I∗, AM(σ) ⊆ AM′(σ). We say thatM andM′ are (behaviorally) equivalent,
notation M≈M′, if both M≤M′ and M′ ≤M.

If M is deterministic, then AM(σ) is a singleton set for each input sequence σ.
In this case, M can equivalently be represented as a structure 〈I,O,Q, q0, δ, λ〉,
with δ : Q×I → Q, λ : Q×I → O, and q

i/o−−→ q′ ⇒ δ(q, i) = q′∧λ(q, i) = o.

MAT framework The most efficient algorithms for model learning all follow
the pattern of a minimally adequate teacher (MAT) as proposed by Angluin [6].
In the MAT framework, learning is viewed as a game in which a learner has
to infer an unknown automaton by asking queries to a teacher. The teacher
knows the automaton, which in our setting is a deterministic Mealy machine
M. Initially, the learner only knows the inputs I and outputs O ofM. The task
of the learner is to learn M through two types of queries:
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– With a membership query, the learner asks what the response is to an input
sequence σ ∈ I∗. The teacher answers with the output sequence in AM(σ).

– With an equivalence query, the learner asks whether a hypothesized Mealy
machine H is correct, that is, whether H ≈ M. The teacher answers yes
if this is the case. Otherwise it answers no and supplies a counterexample,
which is a sequence σ ∈ I∗ that triggers a different output sequence for both
Mealy machines, that is, AH(σ) 6= AM(σ).

Starting from Angluin’s seminal L∗ algorithm [6], many algorithms have been
proposed for learning finite, deterministic Mealy machines via a finite number of
queries. We refer to [22] for recent overview. In applications in which one wants
to learn a model of a black-box reactive system, the teacher typically consists
of a System Under Learning (sul) that answers the membership queries, and a
conformance testing tool [26] that approximates the equivalence queries using a
set of test queries. A test query consists of asking to the sul for the response to
an input sequence σ ∈ I∗, similar to a membership query.

Abstraction We recall relevant parts of the theory of abstractions from [2].
Existing model learning algorithms are only effective when applied to Mealy ma-
chines with small sets of inputs, e.g. fewer than 100 elements. Practical systems
like TCP, however, typically have huge alphabets, since inputs and outputs carry
parameters of type integer or string. In order to learn an over-approximation of
a “large” Mealy machine M, we place a transducer in between the teacher and
the learner, which translates concrete inputs in I to abstract inputs in X, con-
crete outputs in O to abstract outputs in Y , and vice versa. This allows us to
abstract a Mealy machine with concrete symbols in I and O to a Mealy machine
with abstract symbols in X and Y , reducing the task of the learner to inferring
a “small” abstract Mealy machine.

Formally, a mapper for inputs I and outputs O is a deterministic Mealy machine
A = 〈I∪O,X∪Y,R, r0, δ, λ〉, where I andO are disjoint sets of concrete input and
output symbols, X and Y are disjoint sets of abstract input and output symbols,
and λ : R × (I ∪ O) → (X ∪ Y ), the abstraction function, respects inputs and
outputs, that is, for all a ∈ I ∪O and r ∈ R, a ∈ I ⇔ λ(r, a) ∈ X.

Basically, the abstraction of Mealy machine M via mapper A is the Cartesian
product of the underlying transition systems. Formally, letM = 〈I,O,Q, q0,→〉
be a Mealy machine and let A = 〈I ∪ O,X ∪ Y,R, r0, δ, λ〉 be a mapper. Then
αA(M), the abstraction of M via A, is the Mealy machine 〈X,Y ∪ {⊥}, Q ×
R, (q0, r0),→〉, where ⊥6∈ Y is a fresh output and → is given by the rules

q
i/o−−→ q′, r

i/x−−→ r′
o/y−−→ r′′

(q, r)
x/y−−→ (q′, r′′)

6 ∃i ∈ I : r
i/x−−→

(q, r)
x/⊥−−−→ (q, r)

To understand how the mapper is utilized during learning, we follow the exe-
cution of a single input of a query. The learner produces an abstract input x,
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which it sends to the mapper. By inversely following abstraction function λ, the
mapper converts this to a concrete input i and updates its state via transition

r
i/x−−→ r′. The concrete input x is passed on to the teacher, which responds with

a concrete output o. This triggers the transition r′
o/y−−→ r′′ in which the mapper

generates the corresponding abstract output y and updates its state again. The
abstract output is then returned to the learner.

We notice that the abstraction function is utilized invertedly when translating
inputs. More precisely, the abstract input that the learner provides is an output
for the mapper. The translation from abstract to concrete involves picking an
arbitrary concrete value that corresponds with the given abstract value. It could
be that multiple concrete values can be picked, in which case all values should
lead to the same abstract behavior in order to learn a deterministic abstract
model. It can also be that no values correspond to the input abstraction, in which
case, by the second rule, ⊥ is returned to the learner, without consulting the
teacher. We define the abstraction component implementing αA as the transducer
which follows from the mapper A, but inverts the abstraction of inputs.

From the perspective of a learner, a teacher for M and abstraction component
implementing αA together behave exactly like a teacher for αA(M). If αA(M) is
deterministic, then the learner will eventually succeed in learning a deterministic
machine H satisfying αA(M) ≈ H. In [2], also a concretization operator γA is
defined. This operator is the adjoint of the abstraction operator: it turns any ab-
stract machineH with symbols in X and Y into a concrete machine with symbols
in I and O. If H is deterministic then γA(H) is weakly deterministic.

As shown in [2], αA(M) ≤ H implies M ≤ γA(H). This tells us that when
we apply mapper A during learning of some “large” Mealy machine M, even
though we may not be able to learn the behavior ofM exactly, the concretization
γA(H) of the learned abstract model H is an over-approximation of M, that is,
M ≤ γA(H). Similarly to the abstraction component, a concretization compo-
nent for mapper A implements γA. This component is again fully defined by a
mapper, but handles abstraction of outputs invertedly. During model checking,
the composition of the abstract model H and the concretization component for
A provides us with an over-approximation of M.

Framework for mapper definition In order to apply our abstraction ap-
proach, we need an abstraction and a concretization component for a given
mapper A. We could implement these components seperately in an arbitrary
programming language, but then they would have to remain consistent with A.
Moreover, ensuring that translation in one component inverts the corresponding
translation in the other is non-trivial, and difficult to maintain, as changes in
one would have to be applied invertedly in the other.

We used an alternative approach, in which we first define a mapper and then
derive the abstraction and concretization components automatically. To this
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end, we built a language for defining a mapper in terms of (finite) registers,
and functions to encode transitions and outputs. Our language supports case
distinctions with programming-style if-else-statements, and requires that every
branch leads to exactly one output and updates registers exactly once, such
that the translations are complete. Listing 1 shows the example of a mapper
for a simple login system. The mapper stores the first password received, and
compares subsequent passwords to it. The abstract passwords used by the learner
are {true, false}, denoting a correct or incorrect password, respectively. At the
first attempt, true invertedly maps to any concrete password, and false maps to
⊥. Later on true invertedly maps to the value picked the first time, while false
maps to any other value. For TCP, we define multiple abstraction functions for
inputs and outputs, in terms of multiple parameters per input or output.

Listing 1 A simple example mapper for a login system, in a simplified syntax

integer stored := −1;
map enter(integer password→ boolean correct)

if (stored = −1 ∧ password ≥ 0) ∨ stored = password then
correct := true

else
correct := false

end if
end map
update

if stored = −1 ∧ password ≥ 0 then
stored := password

else
stored := stored . Every path explicitly assigns a value

end if
end update

To derive the components, we need to implement the inverse of the abstraction
function, for both inputs and outputs. This can be achieved using a constraint
solver or by just trying out random concrete values and checking if they are
translated to the sought after abstraction. In addition to finding a correspond-
ing concrete value, another purpose of executing abstractions invertedly is to
test the abstraction: different possible values should lead to the same abstract
behavior, as the learner cannot handle non-determinism. A constraint solver usu-
ally picks values in a very structured and deterministic way, which does not test
the abstraction well. Picking concrete values manually allows more control over
obtaining a good test coverage, but is in general less scalable.
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3 Learning setup

3.1 TCP as a system under learning

In TCP there are two interacting entities, the server and the client , which com-
municate over a network through packets, comprising a header and application
data. On both sides there is an application, initiating and using the connection
through socket calls. Each entity is learned seperately and is a sul in the learn-
ing context. This sul thus takes packets or socket calls as inputs. It can output
packets or timeout , in case the system does not respond with any packet. RFC
793 [35] and its extensions, most notably [9,32], specify the protocol.

Packets are defined as tuples, comprising sequence and acknowledgement num-
bers, a payload and flags. By means of abstraction, we reduce the size of sequence
and acknowledgement number spaces. Each socket call also defines an abstract
and concrete input. Whereas packet configurations are the same for both client
and server, socket calls differ. The server can listen for connections and accept
them, whereas the client can actively connect. Both parties can send and receive
data, or close an established connection (specifically, a half-duplex close [9, p.
88]). The server can additionally close its listening socket. Values returned by
socket calls are not in the output alphabet to reduce setup complexity.

Figure 1 displays the learning setup used. The learner generates abstract inputs,
representing packets or socket calls. The abstraction component concretizes each
input by translating abstract parameters to concrete, and then updates its state.
The concrete inputs are then passed on to the network adapter , which in turn
transforms each input into a packet, sending it directly to the sul, or into a socket
call, which it issues to the sul adapter . The sul adapter runs on the same envi-
ronment as the sul and its sole role is to perform socket calls on the sul. Each
reponse packet generated by the sul is received by the network adapter, which
retrieves the concrete output from the packet or produces a timeout output, in
case no packet was received within a predefined time interval. The output is then
sent to the abstraction component, which computes the abstraction, updates its
state again, and sends the abstract output to the learner.

Learner

SUL

concrete outputabstract output

abstract input
LearnLib abstraction 

component network 
adapter

SUL 
adapter

TCP 
implementation

concrete input

response 
packet

request 
packet

system call 
request

system call

learner machine

sul machine

Fig. 1. Overview of the learning setup.
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The learner is based on LearnLib [36], a Java library implementing L∗ based al-
gorithms for learning Mealy machines. The abstraction component is also written
in Java, and interprets and inverts a mapper. The network adapter is a Python
program based on Scapy [38], Pcapy [33], and Impacket [21]. It uses Scapy to
craft TCP packets, and Scapy together with a Pcapy and Impacket based sniffer
to intercept responses. The network adapter is connected to the sul adapter via
a standard TCP connection. This connection is used for communicating socket
calls to be made on the sul. Finally, the sul adapter is a program which per-
forms socket calls on command, written in C to have low level access to socket
options. where this option is applicable as it helps unearth more behavior than
the corresponding non-blocking calls.

3.2 Viewing the SUL as a Mealy machine

TCP implementations cannot be fully captured by Mealy Machines. To learn a
model, we therefore need to apply some restrictions. As mentioned, the number
of possible values for the sequence and acknowledgement numbers is reduced by
means of abstractions. Furthermore, payload is limited to either 0 or 1 byte.
Consequently, 1 byte of data is sent upon a send -call. Flags are limited to only
the most interesting combinations, and we also abstract away from all other fields
from the TCP layer or lower layers, allowing Scapy to pick default values.

TCP is also time-dependent. The sul may, for instance, retransmit packets if
they are not acknowledged within a specified time. The sul may also reset if it
does not receive the acknowledgement after a number of such retransmissions, or
if it remains in certain states for too long. The former we handled by having the
network adapter ignore all retransmissions. For the latter, we verified that the
learning queries learning were short enough so as not to cause these resets.

TCP is inherently concurrent, as a server can handle multiple connections at any
time. This property is difficult to capture in Mealy Machines. Overcoming this,
the sul adapter ensures that at most one connection is accepted at any time by
using a set of variables for locking and unlocking the accept and connect-calls.
Only one blocking socket call can be pending at any time, but non-blocking
socket calls can always be called.

Furthermore, the backlog size parameter defines the number of connections to
be queued up for an eventual accept-call by the server sul. The model grows
linearly with the this parameter, while only exposing repetitive behavior. For
this reason we set the backlog to the value 1.

3.3 Technical challenges

We overcame several technical challenges in order to learn models. Resetting the
sul and setting a proper timeout value are solved similarly to [17].
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Our tooling for sniffing packets sometimes missed packets generated by the sul,
reporting erroneous timeout outputs. This induced non-deterministic behavior,
as a packet may or may not be caught, depending on timing. Each observation
is therefore repeated three times to ensure consistency. Consistent outputs are
cached to speed up learning, and to check consistency with new observations. It
also allows to restart learning with reuse of previous observations.

In order to remove time-dependent behavior we use several TCP settings. Most
notably, we disable slow acknowledgements and enable quick acknowledgements
where possible (on Linux and FreeBSD). The intuition is that we want the sul to
send acknowledgements whenever they can be issued, instead of delaying them.
We also had to disable syn cookies in FreeBSD, as this option caused generation
of the initial sequence number in a seemingly time dependent way, instead of
using fresh values. For Linux, packets generated by a send -call were occasionaly
merged with previous unacknowledged packets, so we could only learn a model
by omitting send.

3.4 Mapper definition

The mapper is based on the work of Aarts et al. [5], and on the RFCs. Socket
calls contain no parameters and do not need abstraction, so they are mapped
simply with the identity relation. TCP packets are mapped by mapping their
parameters individually. Flags are again retained by an identity relation. The
sequence and acknowledgement numbers are mapped differently for inputs and
outputs; input numbers are mapped to {valid, invalid}, and outputs are mapped
to {current,next, zero, fresh}. After a connection is set up, the mapper keeps
track of the sequence number which should be sent by the sul and learner.
Valid inputs are picked according to this, whereas current and next represent
repeated or incremented numbers, respectively. The abstract output zero simply
denotes the concrete number zero, whereas fresh is used for all other numbers.
If no connection is established, any sequence number is valid (as the RFCs then
allow a fresh value), and the only valid acknowledgement number is zero.

Note that all concrete inputs with the same abstract value, should lead to an
equivalent abstract behavior. Valid inputs are defined according to the RFC’s.
However, this is very hard for invalid inputs, as they may be accepted, ignored,
they may lead to error recovery, or even undefined behavior. To learn the behav-
ior for these inputs, abstractions should be defined precisely according to these
behaviors, which is unfeasible to do by hand. As a result, we have excluded in-
valid inputs from the learning alphabet. To translate valid inputs, we first used
a constraint solver which finds solutions for the transition relation. This is done
by taking the disjunction of all path constraints, similar to symbolic execution
techniques [24]. However, this did not test the abstraction well, as the constraint
solver always picks zero if possible, for example. We therefore manually picked
random concrete values to test with, instead. Values were picked with a higher
probability if they were picked or observed previously during the same run, as
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well as the successors of those values. This approach sufficed to translate all
values for our experiments.

4 Model learning results

Using the abstractions defined in Section 2, we learned models of the TCP client
and server for Windows 8, Ubuntu 14.04 and FreeBSD 10.2. For testing we
used the conformance testing algorithm described in [39] to generate efficient
test suites which are parameterized by a middle section of length k . Generated
exhaustively, these ensure learned model correctness, unless the respective im-
plementation corresponds to a model with at least k more states. For each model,
we first executed a random test suite with k of 4, up to 40000 tests for servers,
and 20000 tests for clients. We then ran an exhaustive test suite with k of 2 for
servers, respectively 3 for clients.

Table 1 describes the setting of each of these experiments together with statistics
on learning and testing: (1) the number of states in the final model, (2) the
number of hypotheses found, (3) the total number of membership queries, (4)
the total number of unique test queries run on the sul before the last hypothesis,
(5) the number of unique test queries run to validate the last hypothesis.

SUL States Hyp. Memb. Queries Tests to last Hyp. Tests on last Hyp.
Client Windows 8 13 2 1576 1322 50243
Server Windows 8 38 10 11428 9549 65040
Client Ubuntu 14.04 15 2 1974 15268 56174
Server Ubuntu 14.04 57 14 17879 15681 66523
Client FreeBSD 10.2 12 2 1456 1964 47387
Server FreeBSD 10.2 55 18 22287 12084 75894

Table 1. Statistics for learning experiments

Figure 2 shows the model learned for the Windows 8 client. This model covers
standard client behavior, namely connection setup, sending and receiving data
and connection termination. Based on predefined access sequences, we identify
each state with its analogous state in the RFC state diagram [35, p. 23], if such
a state exists. Transitions taken during simulated communication between a
Windows client and a server are colored green. These transitions were identified
during model checking, on which we expand in Section 5.

Table 1 shows that the models for the Linux and FreeBSD servers have more
states than for Windows, and all models have more states than described in the
specification. We attribute this to several factors. We have already mentioned
that model sizes grow linearly with the value of the backlog-parameter. While we
set it to 1, the setting is overriden by operating system imposed minimum value
of 2 for FreeBSD and Linux. Moreover, sul behavior depends on blocking system
calls and on whether the receive buffer is empty or not. Although specified, this
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Fig. 2. Learned model for Windows 8 TCP Client. To reduce the size of the diagram,
we eliminate all self loops with timeout outputs. We replace flags and abstractions by
their capitalized initial letter, hence use s for syn, a for ack, n for next, etc. We omit
input parameter abstractions, since they are the same for all packets, namely valid for
both sequence and acknoweldgement numbers. Finally, we group inputs that trigger a
transition to the same state with the same output. Timeouts are denoted by ‘-’.

is not modelled explicitly in the specification state diagram. As an example,
the established and close wait states from the standard each have multiple
corresponding states in the model in Figure 2.
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Non-conformance of implementations Inspection of learned models re-
vealed several cases of non-conformance to RFC’s in the corresponding imple-
mentations.

A first non-conformance involves terminating an established connection with a
close. The resulting output should contain a fin if all data up to that point has
been received. If there is data not yet received, the output should contain a rst,
which would signal to the other side an aborted termination [9, p. 88]. Windows
does not conform to this, as a close can generate a rst instead of a fin even in
cases where there is no data to be received, namely, in states where a rcv call
is pending. Figure 2 marks this behavior in red. FreeBSD implementations are
also non-compliant, as they always generate fin packets on a close, regardless
if all data has been received. This would arguably fall under the list of common
bugs [32], namely “Failure to send a RST after Half Duplex Close”. The learned
Linux models fully comply to these specifications.

A second non-conformance has to do with the processing of syn packets. On
receiving a syn packet in a synchronized state, if the sequence number is in “the
window” (as it always is, in our case), the connection should be reset (via a
corresponding rst packet) [35, p.71]. Linux implementations conform for syn
packets but not for syn+ack packets, to which they respond by generating an
acknowledgement with no change of state. Both Windows and FreeBSD respect
this specification.

We note a final non-conformance in Windows implementations. In case the con-
nection does not exist (closed), a reset should be sent in response to any in-
coming packet except for another reset [35, p. 36], but Windows 8 sends nothing.
FreeBSD can be configured to respond in a similar way to Windows, by chang-
ing the blackhole setting.1 This behavior is claimed to provide “some degree of
protention against stealth scans”, and is thus intentional.

5 Model checking results

5.1 Model checking the learned behaviour

We analyzed the learned models of TCP implementations using the model checker
NuSMV [14]. We composed pairs of learned client and server models with a hand-
made model of a non-lossy network, which simply delivers output from one entity
as input for the other entity. Since the abstract input and output domains are
different, the abstract models cannot communicate directly, and so we had to
encode the concretized models within NuSMV code. We wrote a script that
translated the abstract Mealy machine models from LearnLib to NuSMV mod-
ules, and another script that translated the corresponding mappers to NuSMV

1 https://www.freebsd.org/cgi/man.cgi?query=blackhole

https://www.freebsd.org/cgi/man.cgi?query=blackhole
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NuSMV-model

concrete packet 
output

abstract packet 
output

abstract packet 
input

network model concretization 
component

TCP-entity 
model

concrete packet 
input

application layer 
model

socket call

Fig. 3. Schematic overview of NuSMV-model. Only half of the setup is shown in detail,
as the model is symmetric and another TCP-entity model is connected to the network.

modules. TCP entities produce abstract outputs, which are translated to con-
crete. The network module then passes along such concrete messages. Before
being delivered to the other entity, these messages are again transformed into
abstract inputs. By encoding mapper functions as relations, NuSMV is able to
compute both the abstraction function and its inverse, i.e., act as a concretization
component. The global structure of the model is displayed in Figure 3.

In Mealy machines, transitions are labeled by an input/output pair. In NuSMV
transitions carry no labels, and we also had to split the Mealy machine transitions
into a separate input and output part in order to enable synchronization with

the network. Thus, a single transition q
i/o−−→ q′ from a (concrete) Mealy machine

is translated to a pair of transitions in NuSMV:

(loc = q, in = .., out = ..)→(loc = q, in = i, out = ..)→(loc = q′, in = i, out = o).

Sequence and acknowledgement numbers in the implementations are 32-bit num-
bers, but were restricted to 3-bit numbers to reduce the state space. Whereas
concrete messages are exchanged from one entity to the other, socket call in-
puts from the application are simulated by allowing system-calls to occur non-
deterministically. A simplification we make is that we do not allow parallel ac-
tions: an action and all resulting packets have to be fully processed until an-
other action can be generated. Consequently, there can be at most one packet
in the composite model at any time. For example, once a three way handshake
is initiated between a client and a listening server via a connect-call, no more
system-calls can be performed until the handshake is finalized.

5.2 Checking specifications

After a model is composed, the interaction between TCP entities can be ana-
lyzed using the NuSMV model checker. However, it is important to realize that,
since we used abstractions, the learned models of TCP servers and clients are
over-approximations of the actual behaviors of these components. If Mealy ma-
chineM models the actual behavior of a component, A is the mapper used, and
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H is the abstract model that we learned then, as explained in Section 2, correct-
ness of H impliesM≤ γA(H). Since γA(H) is weakly deterministic, in this case
there exists a forward simulation relation fromM to γA(H). This forward simu-
lation is preserved by the translation from Mealy machines to NuSMV. Results
from Grumberg and Long [19] then imply that, for any ∀CTL∗-formula (which
includes all LTL-formulas) we can transfer model checking results for γA(H) to
the (unknown) model M. Since simulations are preserved by composition, this
result even holds when γA(H) is used as a component in a larger model.

Another essential point is that only a subset of the abstract inputs is used for
learning. Hence invalid inputs (i.e. inputs with invalid parameters) are not in-
cluded in our models. Traces with these inputs can therefore not be checked.
Hence, the first property that we must check is a global invariant that asserts
that invalid inputs will never occur. In case they do, NuSMV will provide a
counterexample, which is used to find the cause of invalidity. During our initial
experiments, NuSMV found several counterexamples showing that invalid inputs
may occur. Based on analysis of these counterexamples we either refined/cor-
rected the definition of one of the mappers, or we discovered a counterexample for
the correctness of one of the abstract models. After a number of these iterations,
we obtained a model in which invalid inputs can no longer occur.

With only valid inputs, composite model may be checked for arbitrary ∀CTL∗

formulas. Within these formulas, we may refer to input and output packets and
their constituents (sequence numbers, acknowledgements, flags,..). This yields a
powerful language for stating properties, illustrated by a few examples below.
These formulas are directy based on the RFC’s.

Many properties that are stated informally in the RFC’s refer to control states
of the protocol. These control states, however, cannot be directly observed in our
black-box setting. Nevertheless, we can identify states, e.g. based on inputs and
outputs leading to and from it. For example, we base the proposition established
on RFC 793, which states that: “The connection becomes ‘established’ when
sequence numbers have been synchronized in both directions” [35, p. 11], and
that only a close or abort socket call or incoming packets with a rst or fin
can make an entity leave the established state [35, section 3.9].

We first show a simple safety formula checking desynchonization: if one entity is
in the established state, the other cannot be in syn sent and time wait:

G¬(tcp1-state = established ∧ (tcp2-state = syn sent ∨ tcp2-state = time wait))

The next specification considers terminating an established connection with a
close-input. The output should contain a fin, except if there is unread data
(in which case it should contain a rst). This corresponds to the first non-
conformance case explained in Section 4. The specification is captured by the fol-
lowing formula, in which T is the triggered-operator as defined in NuSMV.

G(state = established→ ((input = rcv T input 6= packet with data) ∧ input =
close)→ (F output = packet with fin)))
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We have formalized and checked, in a similar way, specifications for all other
non-conforming cases as well as many other specifications.

We have also checked which transitions in the abstract models are reachable in
the composed system. For every transition, we take its input and starting state,
and check whether they can occur together. In this way we can find the reachable
parts of model. This proves useful when analysing models, as the reachable parts
likely harbor bugs with the most impact. Similarly, comparing reachable parts
helps reveal the most relevant differences between implementations. The first
and third non-conformances in Section 4 occur in the reachable parts of the
respective models. Figure 2 marks these parts in green.

6 Conclusions and future work

We combined automata learning, model checking and abstraction techniques to
obtain and analyze models of Windows, Linux and FreeBSD TCP server and
client implementations. Composing these models together with the model of
a network allowed us to perform model checking over the composite setup and
verify that any valid number generated by one TCP entity is seen as valid number
by the other TCP entity. We have also identified breaches of the RFC’s in all
operating systems. Our work suggests several directions for future work.

Based on our understanding of TCP, we manually defined abstractions (mappers)
that made it possible to learn models of TCP implementations. Getting the
mapper definitions right turned out to be tricky. In fact, we had to restrict our
learning experiments to valid abstractions of the sequence and acknowledgement
numbers. This proved limiting when searching for interesting rules to model
check, like for example those that would expose known implementation bugs.
Such rules often concern invalid parameters, which do not appear in the models
we learned. Learning algorithms that construct the abstractions automatically
could potentially solve this problem. We hope that extensions of the learning
algorithms for register automata as implemented in the Tomte [4] and RALib [12]
tools will be able to construct abstractions for TCP fully automatically.

Our work was severely restricted by the lack of expressivity of Mealy machines.
In order to squeeze the TCP implementation into a Mealy machine, we had to
eliminate timing based behavior as well as re-transmissions. Other frameworks
for modeling state machines might facilitate modelling these aspects. Obviously,
we would also need learning algorithms capable of generating such state ma-
chines. There has been some preliminary work on extening learning algorithms
to I/O transition systems [3,44] and to timed automata [18,43]. Extensions of
this work could eliminate some of the restrictions that we encountered.
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