
Learning Register Automata with
Fresh Value Generation?
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Abstract. We present a new algorithm for active learning of register
automata. Our algorithm uses counterexample-guided abstraction refine-
ment to automatically construct a component which maps (in a history
dependent manner) the large set of actions of an implementation into a
small set of actions that can be handled by a Mealy machine learner. The
class of register automata that is handled by our algorithm extends pre-
vious definitions since it allows for the generation of fresh output values.
This feature is crucial in many real-world systems (e.g. servers that gen-
erate identifiers, passwords or sequence numbers). We have implemented
our new algorithm in a tool called Tomte.

1 Introduction

Model checking and automata learning are two core techniques in model-driven
engineering. In model checking [13] one explores the state space of a given state
transition model, whereas in automata learning [25, 17, 6] the goal is to obtain
such a model through interaction with a system by providing inputs and observ-
ing outputs. Both techniques face a combinatorial blow up of the state-space,
commonly known as the state explosion problem. In order to find new techniques
to combat this problem, it makes sense to follow a cyclic research methodology in
which tools are applied to challenging applications, the experience gained during
this work is used to generate new theory and algorithms, which in turn are used
to further improve the tools. After consistent application of this methodology
for 25 years model checking is now applied routinely to industrial problems [16].
Work on the use of automata learning in model-driven engineering started later
[22] and has not yet reached the same maturity level, but in recent years there
has been spectacular progress.

We have seen, for instance, several convincing applications of automata learn-
ing in the area of security and network protocols. Cho et al. [12] successfully used
automata learning to infer models of communication protocols used by botnets.
Automata learning was used for fingerprinting of EMV banking cards [5]. It also
revealed a security vulnerability in a smartcard reader for internet banking that
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was previously discovered by manual analysis, and confirmed the absence of this
flaw in an updated version of this device [11]. Fiterau et al. [14] used automata
learning to demonstrate that both Linux and Windows implementations vio-
late the TCP protocol standard. Using a similar approach, Tijssen [26] showed
that implementations of the Secure Shell (SSH) protocol violate the standard.
In [23], automata learning is used to infer properties of a network router, and for
testing the security of a web-application (the Mantis bug-tracker). Automata
learning has proven to be an extremely effective technique for spotting bugs,
complementary to existing methods for software analysis.

A major theoretical challenge is to lift learning algorithms for finite state
systems to richer classes of models involving data. A breakthrough has been
the definition of a Nerode congruence for a class of register automata [8, 9] and
the resulting generalization of learning algorithms to this class [18, 19]. Register
automata are a type of extended finite state machines in which one can test for
equality of data parameters, but no operations on data are allowed. Recently,
the results on register automata have been generalized to even larger classes of
models in which guards may contain arithmetic constraints and inequalities [10].

A different approach for extending learning algorithms to classes of models
involving data has been proposed in [4]. Here the idea is to place an intermediate
mapper component in between the implementation and the learner. This mapper
abstracts (in a history dependent manner) the large set of (parametrized) actions
of the implementation into a small set of abstract actions that can be handled
by automata learning algorithms for finite state systems. In [2], we described an
algorithm that uses counterexample-guided abstraction refinement to automat-
ically construct an appropriate mapper for a subclass of register automata that
may only store the first and the last occurrence of a parameter value.

Existing register automaton models [8, 9, 2] do not allow for the generation of
fresh output values. This feature is technically challenging due to the resulting
nondeterminism. Fresh outputs, however, are crucial in many real-world systems,
e.g. servers that generate fresh identifiers, passwords or sequence numbers. The
main contribution of this article is an extension of the learning algorithm of [2]
to a setting with fresh outputs. We have implemented the new learning algo-
rithm in our Tomte tool, http://tomte.cs.ru.nl/. As part of the LearnLib
tool [21, 24], a learning algorithm for register automata without fresh outputs
has been implemented. In [3], we compared LearnLib with a previous version
of Tomte (V0.3), on a common set of benchmarks (without fresh outputs), a
comparison that turned out favorably for Tomte. Tomte, for instance, can learn
a model of a FIFO-set buffer with capacity 30, whereas LearnLib can only learn
FIFO-set buffers with capacity up to 7. In this paper, we present an experimen-
tal evaluation of the new Tomte 0.4. Due to several optimizations, Tomte 0.4
significantly outperforms Tomte 0.3. In addition, Tomte can now learn models
for new benchmarks that involve fresh outputs.
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2 Register Automata

In this section, we define register automata and their operational semantics in
terms of Mealy machines. For reasons of exposition, the notion of register au-
tomaton that we define here is a simplified version of what we have implemented
in our tool: Tomte also supports constants and actions with multiple parameters.

We assume an infinite set V of variables. An atomic formula is a boolean ex-
pression of the form x = y or x 6= y, with x, y ∈ V. A formula ϕ is a conjunction
of atomic formulas. We write Φ(X) for the set of formulas with variables taken
from X. A valuation for a set of variables X ⊆ V is a function ξ : X → Z. We
write Val(X) for the set of valuations for X. If ϕ is a formula with variables from
X and ξ is a valuation for X, then we write ξ |= ϕ to denote that ξ satisfies ϕ.

Definition 1. A register automaton (RA) is a tuple R = 〈I,O, V, L, l0, Γ 〉 with

– I and O finite sets of input symbols and output symbols, respectively,
– V ⊆ V a finite set of state variables; we assume two special variables in and

out not contained in V and write Vi/o for the set V ∪ {in, out},
– L a finite set of locations and l0 ∈ L the initial location,
– Γ ⊆ L × I × Φ(Vi/o) × (V → Vi/o) × O × L a finite set of transitions. For

each transition 〈l, i, g, %, o, l′〉 ∈ Γ , we refer to l as the source, i as the input
symbol, g as the guard, % as the update, o as the output symbol, and l′ as
the target. We require that out does not occur negatively in the guard, that
is, not in a subformula of the form x 6= y.

In the above definition, variables in and out are used to specify the data param-
eter of input and output actions, respectively. The requirement that out does
not occur negatively in guards means that there are two types of transitions:
transitions in which there are no constraints on the value of out, and transitions
in which the value of out equals the value of one of the other variables in V ∪{in}.

Example 1. As a first running example of a register automaton we use a FIFO-
set with capacity two, similar to the one presented in [19]. A FIFO-set is a queue
in which only different values can be stored, see Figure 1. Input Push tries to
insert a value in the queue, and input Pop tries to retrieve a value from the
queue. The output in response to a Push is OK if the input value can be added
successfully, or NOK if the input value is already in the queue or if the queue
is full. The output in response to a Pop is Return, with as parameter the oldest
value from the queue, or NOK if the queue is empty. We omit parameters that
do not matter, and for instance write Pop() instead of Pop(in) if parameter in
does not occur in the guard and is not touched by the update.

The operational semantics of register automata is defined in terms of (infinite
state) Mealy machines.

Definition 2. A Mealy machine is a tuple M = 〈I,O,Q, q0,→〉, where I, O,
and Q are nonempty sets of input actions, output actions, and states, respec-
tively, q0 ∈ Q is the initial state, and→⊆ Q×I×O×Q is the transition relation.
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l0start l1 l2

Push(in)/OK()
v:=in

Pop()/NOK()

in 6= v
Push(in)/OK()
w:=in

in = v
Push(in)/NOK()

out = v
Pop()/Return(out)

out = v
Pop()/Return(out)
v:=w

Push()/NOK()

Fig. 1: FIFO-set with a capacity of 2 modeled as a register automaton

We write q
i/o−−→ q′ if (q, i, o, q′) ∈→, and q

i/o−−→ if there exists a state q′ such

that q
i/o−−→ q′. A Mealy machine is input enabled if, for each state q and input

i, there exists an output o such that q
i/o−−→. A Mealy machine is deterministic

if for each state q and input action i there is exactly one output action o and

exactly one state q′ such that q
i/o−−→ q′. A deterministic Mealy machine M can

equivalently be represented as a structure 〈I,O,Q, q0, δ, λ〉, where δ : Q× I → Q

and λ : Q× I → O are defined by: q
i/o−−→ q′ ⇒ δ(q, i) = q′ ∧ λ(q, i) = o.

A partial run ofM is a finite sequence α = q0 i0 o0 q1 i1 o1 q2 · · · in−1 on−1 qn,

beginning and ending with a state, such that for all j < n, qj
ij/oj−−−→ qj+1. A run

of M is a partial run that starts with initial state q0. A trace of M is a finite
sequence β = i0 o0 i1 o1 · · · in−1 on−1 that is obtained by erasing all the states
from a run of M. We call a set S of traces behavior deterministic if, for all
β ∈ (I · O)∗, i ∈ I and o ∈ O, β i o ∈ S ∧ β i o′ ∈ S =⇒ o = o′. We call
M behavior deterministic if its set of traces is so. Let M1 and M2 be Mealy
machines with the same sets of input actions. Then we say thatM1 implements
M2, notation M1 ≤M2, if all traces of M1 are also traces of M2.

The operational semantics of a register automaton is a Mealy machine in
which the states are pairs of a location l and a valuation ξ of the state variables.
A transition may fire for given input and output values if its guard evaluates to
true. In this case, a new valuation of the state variables is computed using the
update part of the transition. We use 0 as initial value for state variables and
do not allow 0 as a parameter value in actions.

Definition 3. Let R = 〈I,O, V, L, l0, Γ 〉 be a RA. The operational semantics
of R, denoted JRK, is the Mealy machine 〈I × (Z \ {0}), O × (Z \ {0}), L ×
Val(V ), (l0, ξ0),→〉, where ξ0(v) = 0 for all v ∈ V , and relation → is given by

〈l, i, g, %, o, l′〉 ∈ Γ
ι = ξ ∪ {(in, d), (out, e)} ι |= g ξ′ = ι ◦ %

(l, ξ)
i(d)/o(e)−−−−−→ (l′, ξ′)

We call R input enabled or deterministic if its operational semantics JRK is input
enabled or deterministic, respectively. A run or trace of R is just a run or trace,
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respectively, of JRK. We call R input deterministic if for each state and for each
input action at most one transition may fire.

Example 2. The register automaton of Figure 1 is input deterministic but not
deterministic. For instance, as there are no constraints on the value of out for
Push-transitions, an input Push(1) may induce both an OK(1) and an OK(2)
output (in fact, the output parameter can take any value). Note that for Push-
transitions the output value does not actually matter in the sense that out occurs
neither in the guard nor in the range of the update function. Hence we can easily
make the automaton of Figure 1 deterministic, for instance by strengthening the
guards with out = in for transitions where the output value does not matter.

Example 3. Our second running example is a register automaton, displayed in
Figure 2, that describes a simple login procedure. If a user performs a Register-
input then the automaton returns the output symbol OK together with a pass-
word. The user may then login by performing a Login-input together with the
password that she has just received. After login the user may either change the
password or logout. We can easily make the automaton input enabled by adding
self loops i/NOK in each location, for each input symbol i that is not enabled.
It is not possible to model the login procedure as a deterministic register au-
tomaton: the very essence of the protocol is that the system nondeterministically
picks a password and gives it to the user.

l0start l1 l2

Register()/OK(out)
pwd:=out

in = pwd
Login(in)/OK()

in 6= pwd
Login(in)/NOK()

Logout()/OK()

ChangePassword(in)/OK()
pwd:=in

Fig. 2: A simple login procedure modeled as a register automaton

3 Active Automata Learning

Active automata learning algorithms have originally been developed for infer-
ring finite state acceptors for unknown regular languages [6]. Since then these
algorithms have become popular with the testing and verification communities
for inferring models of black box systems in an automated fashion. While the
details change for concrete classes of systems, all of these algorithms follow ba-
sically the same pattern. They model the learning process as a game between a
learner and a teacher. The learner has to infer an unknown automaton with the
help of the teacher. The learner can ask three types of queries to the teacher:

Output Queries ask for the expected output for a concrete sequence of inputs.
In practice, output queries can be realized as simple tests.

Reset queries prompt the teacher to return to its initial state and are typically
asked after each output query.
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Equivalence Queries check whether a conjectured automaton produced by
the learner is correct. In case the automaton is not correct, the teacher pro-
vides a counterexample, a trace exposing a difference between the conjecture
and the expected behavior of the system to be learned. Equivalence queries
can be approximated through (model-based) testing in black-box scenarios.

A learning algorithm will use these three kinds of queries and produce a sequence
of automata converging towards the correct one. We refer the reader to [25, 20]
for introductions to active automata learning.

Figure 3 presents the overall architecture of our learning approach, which
we implemented in the Tomte tool. At the right we see the teacher or system
under learning (SUL), an implementation whose behavior can be described by
an (unknown) input enabled and input deterministic register automaton. At the
left we see the learner, which is a tool for learning finite deterministic Mealy
machines. In our current implementation we use LearnLib [21, 24], but there
are also other libraries like libalf [7] that implement active learning algorithms.
In between the learner and the SUL we place three auxiliary components: the
determinizer, the lookahead oracle, and the abstractor. First the determinizer
eliminates the nondeterminism of the SUL that is induced by fresh outputs.
Then the lookahead oracle annotates events with information about the data
values that should be remembered since they play a role in the future behavior
of the SUL. Finally, the abstractor maps the large set of concrete values of the
SUL to a small set of symbolic values that can be handled by the learner.

The idea to use an abstractor for learning register automata originates from
[2] (based on work of [4]). Using abstractors one can only learn restricted types
of deterministic register automata. Therefore, [1, 3] introduced the concept of
a lookahead oracle, which makes it possible to learn any deterministic register
automaton. In this paper we extend the algorithm of [1, 3] with the notion of a
determinizer, allowing us to also learn register automata with fresh outputs. In
addition, we present some optimizations of the lookahead oracle that consider-
ably improve the performance of our tool.

Learner Abstractor
Lookahead

Oracle
Determinizer

Teacher
(SUL)

Fig. 3: Architecture of Tomte

4 A Theory of Mappers

In this section, we recall relevant parts of the theory of mappers from [4]. In
order to learn an over-approximation of a “large” Mealy machine M, we may
place a transducer in between the teacher and the learner, which translates
concrete inputs to abstract inputs, concrete outputs to abstract outputs, and
vice versa. This allows us to reduce the task of the learner to inferring a “small”
Mealy machine with an abstract alphabet. The determinizer and the abstractor
of Figure 3 are examples of such transducers. The behavior of these transducers is
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fully specified by a mapper, a deterministic Mealy machine in which the concrete
symbols are inputs and the abstract symbols are outputs.

Definition 4 (Mapper). A mapper of concrete inputs I, concrete outputs O,
abstract inputs X, and abstract outputs Y is a deterministic Mealy machine
A = 〈I ∪O,X ∪ Y,R, r0, δ, λ〉, where

– I and O are disjoint sets of concrete input and output symbols,
– X and Y are disjoint sets of abstract input and output symbols, and
– λ : R× (I ∪O)→ (X ∪ Y ), referred to as the abstraction function, respects

inputs and outputs, that is, for all a ∈ I∪O and r ∈ R, a ∈ I ⇔ λ(r, a) ∈ X.

A mapper allows us to abstract a Mealy machine with concrete symbols in
I and O into a Mealy machine with abstract symbols in X and Y . Basically,
the abstraction of Mealy machine M via mapper A is the Cartesian product of
the underlying transition systems, in which the abstraction function is used to
convert concrete symbols into abstract ones.

Definition 5 (Abstraction). Let M = 〈I,O,Q, q0,→〉 be a Mealy machine
and let A = 〈I∪O,X∪Y,R, r0, δ, λ〉 be a mapper. Then αA(M), the abstraction
ofM via A, is the Mealy machine 〈X,Y ∪{⊥}, Q×R, (q0, r0),→〉, where ⊥6∈ Y
and → is given by the rules

q
i/o−−→ q′, r

i/x−−→ r′
o/y−−→ r′′

(q, r)
x/y−−→ (q′, r′′)

6 ∃i ∈ I : r
i/x−−→

(q, r)
x/⊥−−−→ (q, r)

The first rule says that a state (q, r) of the abstraction has an outgoing x-

transition for each transition q
i/o−−→ q′ of M with λ(r, i) = x. In this case, there

exist unique r′, r′′ and y such that r
i/x−−→ r′

o/y−−→ r′′ in the mapper. An x-
transition in state (q, r) then leads to state (q′, r′′) and produces output y. The
second rule in the definition is required to ensure that the abstraction αA(M)
is input enabled. Given a state (q, r) of the mapper, it may occur that for some
abstract input symbol x there exists no corresponding concrete input symbol i
with λ(r, i) = x. In this case, an input x triggers the special “undefined” output
symbol ⊥ and leaves the state unchanged.

A mapper describes the behavior of a transducer component that we can
place in between a Learner and a Teacher. Consider a mapper A = 〈I ∪O,X ∪
Y,R, r0, δ, λ〉. The transducer component that is induced by A records the cur-
rent state, which initially is set to r0, and behaves as follows:

– Whenever the transducer is in a state r and receives an abstract input x ∈ X
from the learner, it nondeterministically picks a concrete input i ∈ I such
that λ(r, i) = x, forwards i to the teacher, and jumps to state δ(r, i). If there
exists no concrete input i such that λ(r, i) = x, then the component returns
output ⊥ to the learner.

– Whenever the transducer is in a state r and receives a concrete answer o
from the teacher, it forwards λ(r, o) to the learner and jumps to state δ(r, o).
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– Whenever the transducer receives a reset query from the learner, it changes
its current state to r0, and forwards a reset query to the teacher.

From the perspective of a learner, a teacher for M and a transducer for A
together behave exactly like a teacher for αA(M). (We refer to [4] for a formal-
ization of this claim.) In [4], also a concretization operator γA(H) is defined.
This concretization operator is the adjoint of the abstraction operator: for a
given mapper A, the corresponding concretization operator turns any abstract
Mealy machine H with symbols in X and Y into a concrete Mealy machine with
symbols in I and O. As shown in [4], αA(M) ≤ H implies M≤ γA(H).

5 The Determinizer

The example of Figure 2 shows that input deterministic register automata may
exhibit nondeterministic behavior: in each run the automaton may generate
different output values (passwords). This is a useful feature since it allows us to
model the actual behavior of real-world systems, but it is also problematic since
learning tools such as LearnLib can only handle deterministic systems. Most
(but not all) of the nondeterminism of register automata can be eliminated by
exploiting symmetries that are present in these automata. These symmetries are
captured through the notion of an automorphism.

Definition 6. A zero respecting automorphism is a bijection h : Z → Z satis-
fying h(0) = 0.

Zero respecting automorphisms can be lifted to the valuations, states, actions,
runs and traces of a register automaton. They induce an equivalence relation on
traces. Below we show that each trace is equivalent to a trace in which all fresh
inputs are positive and all fresh outputs are negative. Value 0 plays a special
role as the initial value of variables and does not occur in traces.

Definition 7 (Neat traces). Consider a trace β of register automaton R:

β = i0(d0) o0(e0) i1(d1) o1(e1) · · · in−1(dn−1) on−1(en−1) (1)

Let Sj be the set of values that occur in β before input ij (together with initial
value 0), and let Tj be the set of values that occur before output oj: S0 = {0},
Tj = Sj ∪{dj} and Sj+1 = Tj ∪{ej}. Then β has neat inputs if each input value
is either equal to a previous value, or equal to the largest preceding value plus
one, that is, for all j, dj ∈ Sj ∪ {max(Sj) + 1}. Similarly, β has neat outputs
if each output value is either equal to a previous value, or equal to the smallest
preceding value minus one, that is, for all j, ej ∈ Tj ∪ {min(Tj)− 1}. A trace is
neat if it has neat inputs and outputs, and a run is neat if its trace is neat.

Example 4. The trace i(1) o(3) i(7) o(7) i(3) o(2) is not neat, for instance be-
cause the first output value 3 is fresh but not equal to −1, the smallest pre-
ceding value (including 0) minus 1. Also, the second input value 7 is fresh but
not equal to 4, the largest preceding value plus 1. An example of a neat trace is
i(1) o(−1) i(2) o(2) i(−1) o(−2).
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The next proposition implies that in order to learn the behavior of a register
automaton it suffices to study its neat traces, since any other trace can be
obtained from a neat trace via a zero respecting automorphism.

Proposition 1. For every run α there exists a zero respecting automorphism h
such that h(α) is neat.

In Example 4, for instance, the (non neat) run with trace i(1) o(3) i(7) o(7) i(3)
o(2) can be mapped to the neat run with trace i(1) o(−1) i(2) o(2) i(−1) o(−2)
by the automorphism h that acts as the identity function except that h(3) = −1,
h(7) = 2, h(2) = −2, h(−1) = 7 and h(−2) = 3.

Whereas the learner may choose to only provide neat inputs, we usually
have no control over the outputs generated by the SUL, so these will typically
not be neat. In order to handle this, we place a mapper component, called the
determinizer, in between the SUL and the learner. The determinizer renames the
first fresh output value generated by the SUL to −1, the second to −2, etc. The
behavior of the determinizer is fully specified by the mapper P defined below.
As part of its state this mapper maintains a function (one-to-one relation) R
describing the current renamings, which grows dynamically during an execution.
Whenever the SUL generates an output n that does not occur in dom(R), the
domain of R, this output is mapped to a value m one less than the minimal value
in ran(R), the range of R, and the pair (n,m) is added to R. For any finite one-
to-one function R that contains (0, 0), let R̂ be a zero respecting automorphism
that extends R. Whenever the learner generates an input m, this is concretized
by the mapper to value n = R̂−1(m), which is forwarded to the SUL. Again, if
n does not occur in the domain of R, then R is extended with the pair (n,m).

Definition 8. Let R be an input deterministic register automaton with inputs
I and outputs O. The polisher for R is the mapper P such that

– the sets of concrete and abstract inputs both equal to I × Z,

– the sets of concrete and abstract outputs both equal to O × Z,

– the set of states consists of the finite one-to-one relations contained in Z×Z,

– the initial state is {(0, 0)}.
– for all mapper states R, i ∈ I, o ∈ O and n ∈ Z,

λ(R, i(n)) = i(R̂(n))

λ(R, o(n)) =

{
o(R(n)) if n ∈ dom(R)
o(min(ran(R))− 1) otherwise

δ(R, i(n)) = R ∪ {(n, R̂(n))}

δ(R, o(n)) =

{
R if n ∈ dom(R)
R ∪ {(n,min(ran(R))− 1)} otherwise

Proposition 2. Any trace of αP(R) with neat inputs is neat. Moreover, αP(R)
and R have the same neat traces.
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Example 5. The determinizer does not remove all sources of nondeterminism.
The register automation of Figure 2, for instance, is not behavior deterministic,
even when we only consider neat traces, because of neat traces Register(1) OK(1)
and Register(1) OK(−1). Figure 4 shows another example, which models a simple
slot machine. By pressing a button a user may stop a spinning reel to reveal a
symbol. If two consecutive symbols are equal then the user wins, otherwise she
loses. The nondeterminism in the automaton of Figure 2 is harmless since the

l0start l1 l2

button()/reel(symbol)
v:=symbol

button()/reel(symbol)
w:=symbol

v 6= w
button()/lose()

v = w
button()/win()

Fig. 4: A simple slot machine modeled as a register automaton

parameter value of the OK-output does not matter and the behavior after the
different outputs is the same. The nondeterminism of Figure 4, however, is real
in the sense that it leads to distinct behaviors with different output symbols.

In the scenarios of Example 5 the automata nondeterministically select an
output which then ‘accidentally’ equals a previous value. We call this a collision.

Definition 9. Let β be a trace of R as in equation (1). Then β ends with a
collision if (a) output value en−1 is not fresh (en−1 ∈ Tn−1), and (b) the sequence
obtained by replacing en−1 by some other value (except 0) is also a trace of R.
We say that β has a collision if it has a prefix that ends with a collision.

Example 6. The trace button() reel(137) button() reel(137) of the register au-
tomaton of Figure 4 has a collision, because the last occurrence of 137 is not
fresh and if we replace it by 138 the result is again a trace of the automaton.

In many protocols, fresh output values are selected from a finite but large
domain. TCP sequence and acknowledgement numbers, for instance, are 32 bits
long. The length of the traces generated during learning is usually not that long
and these traces typically only contain a few fresh outputs. As a result, the prob-
ability that collisions occur during the learning process is typically very small.
For these reasons, we have decided in this paper to consider only observations
without collisions. Under the assumption that the SUL will not repeatedly pick
the same fresh value, we can detect whether an observation contains a collision
by simply repeating the experiment a few times: if, after the renames performed
by the determinizer, we still observe nondeterminism then a collision has oc-
curred. By restricting ourselves to collision free traces, it may occur that the
automata that we learn incorrectly describe the behavior of the SUL in the case
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of collisions. We will, for instance, miss the win-transition of Figure 4. But if
collisions are rare then it is extremely difficult to learn those parts of the SUL
behavior anyway. In applications with many collisions (for instance when fresh
output values are selected randomly from a small domain) it may be better not
to use the learning algorithm described in this paper, but rather an algorithm
for learning nondeterministic automata such as the one presented in [27].

Our approach for learning register automata with fresh outputs relies on the
following proposition.

Proposition 3. The set of collision free neat traces of an input deterministic
register automaton is behavior deterministic.

This means that our approach works for those register automata in which,
when a fresh output is generated, it does not matter for the future behavior
whether or not this fresh output equals some value that occurred previously.
This is typically the case for real-world systems such as servers that generate
fresh identifiers, passwords or sequence numbers.

6 The Lookahead Oracle

The main task of the lookahead oracle is to annotate each output action of the
SUL with a set of values that are memorable after occurrence of this action.
Intuitively, a parameter value d is memorable if it has an impact on the future
behavior of the SUL: either d occurs in a future output, or a future output
depends on the equality of d and a future input.

Definition 10. Let R be a register automaton, let β be a collision free trace of
R, and let d ∈ Z/{0} be a value that occurs as (input/output) parameter in β.
Then d is memorable after β iff R has a collision free trace of the form β β′,
such that if we replace all occurrences of d in β′ by a fresh value f then the
resulting sequence β (β′[f/d]) is not a trace of R anymore.

Example 7. In our example of a FIFO-set with capacity 2 (Figure 1), the set of
memorable values after trace β = Push(1) OK() Push(2) OK() Push(3) NOK()
is {1, 2}. Values 1 and 2 are memorable, because of the subsequent trace β′ =
Pop() Return(1) Pop() Return(2). If we rename either the 1 or the 2 in β′ into a
fresh value, and append the resulting sequence to β, then the result is no longer a
trace of the model. In the example of the login procedure (Figure 2), value 2207
is memorable after Register() OK(2207) because Register() OK(2207) Login(2207)
OK() is a trace of the automaton, but Register() OK(2207) Login(1) OK() is not.

When the Lookahead Oracle receives an input action from the Abstractor,
the input is forwarded to the Determinizer unchanged. When the Lookahead
Oracle receives a concrete output action o from the Determinizer (see Figure 3),
then it forwards a pair consisting of o and a valuation ξ to the Abstractor. The
domain of ξ is a set of variables W and the range equals a set of memorable
values after the occurrence of o. The set W may grow dynamically during the

11



learning process when the maximal number of memorable values of states in the
observation tree increases.

In order to accomplish its task, the Lookahead Oracle stores all the traces
of the SUL observed during learning in an observation tree. In practice, this
observation tree is also useful as a cache for repeated queries on the SUL. Each
node N in the tree is characterized by the trace to it from the root and N.MemV ,
the set of values which are memorable after running this trace.

Figure 5 shows two observation trees for our FIFO-set example.

N0

{}

N1

{}

N3

{}

Push(2)/OK()

N4

{}

Pop()/Return(1)

Push(1)/OK()

N2

{}

.

.

.

Pop()/NOK()

N0

{}

N1

{1}

N3

{}

Push(2)/OK()

N4

{}

Pop()/Return(1)

Push(1)/OK()

N2

{}

.

.

.

Pop()/NOK()

Fig. 5: Observation trees for FIFO-set without and with Pop() lookahead trace

Whenever a new node N is added to the tree, the oracle computes a set of
memorable values for it. For this purpose, the oracle maintains a set of lookahead
traces. All the lookahead traces are run starting at N to explore the future of
that node and to discover its memorable values.

Definition 11. A lookahead trace is a sequence of symbolic input actions of the
form i(v) with i ∈ I and v ∈ {p1, p2, . . .} ∪ {n1, n2, . . .} ∪ {f1, f2, . . .}.

Intuitively, a lookahead trace is a symbolic trace, where each parameter refers
to either a previous value (pj), or to a new input value (nj), or to a new, fresh
output value (fj). A lookahead trace can be converted into a concrete lookahead
trace on the fly, by replacing each variable by a concrete value. Within lookahead
traces, parameter p1 plays a special role as the parameter that is replaced by a
fresh value. Instances of all lookahead traces are run in each new node to compute
memorable values. At any point in time, the set N.MemV of known memorable
values is a subset of the full set of memorable values of node N . Whenever a
memorable value has been added to a node, we require an observation tree to
be lookahead complete. This means every memorable value found has to have an
origin, i.e., it has to stem from either the memorable values of the parent node
or the values in the preceding transition:

N
i(d)/o(e)−−−−−→ N ′ ⇒ N ′.MemV ⊆ N.MemV ∪ {d, e}.

12



We employ a similar restriction on any non-fresh output parameters contained in
the transition leading up to a node. These too have to originate from either the
memorable values of the parent, or the input parameter in the transition. Herein
we differentiate from the algorithm in [1] which only enforced this restriction on
memorable values at the expense of running additional lookahead traces.

The observation tree at the left of Figure 5 is not lookahead complete since
output value 1 of output Return(1) is neither part of the memorable values of the
node N1 nor is it an input in Pop(). Whenever we detect such an incompleteness,
we add a new lookahead trace (in this case Pop()) and restart the entire learning
process with the updated set of lookahead traces to retrieve a lookahead-complete
observation tree. The observation tree at the right is constructed after adding
the lookahead trace Pop(). This trace is executed for every node constructed,
as highlighted by the dashed edges. The output values it generates are then
tested if they are memorable and if so, stored in the MemV set of the node.
When constructing node N1, the lookahead trace Pop() gathers the output 1.
This output is verified to be memorable and then stored to N1’s MemV set. We
refer to [1] for more details about algorithms for the lookahead oracle.

7 The Abstractor

7.1 Mapper definition

The behavior of the abstractor can be formally described by a mapper in the
sense of Section 4. Let I and O be the sets of input symbols and output symbols,
respectively, of the register automaton that we are learning. The lookahead oracle
annotates output symbols from O with valuations from a set W = {w1, . . . , wn}
of variables, thereby telling the abstractor what are the memorable values it
needs to store. We define a family of mappers AF , which are parametrized
by a function F : I → 2W . Intuitively, w ∈ F (i) indicates that it is relevant
whether the parameter of an input symbol i is equal to w or not. The initial
mapper is parametrized by function F∅ given by F∅(i) = ∅ for all i ∈ I. Using
counterexample-guided abstraction refinement, the sets F (i) are subsequently
extended. The abstraction function of the mapper AF leaves the input and
output symbol unchanged, but modifies the parameter values. The abstraction
function replaces the actual value of an input parameter by the name of a vari-
able in F (i) that has the same value, or by ⊥ in case there is no such variable.
Thus the abstract domain of the parameter of i is the finite set F (i) ∪ {⊥}.
Likewise, the actual value of an output parameter is not preserved, but only the
name of variable in W ∪ {in} that has the same value, or ⊥ if there is no such
variable. The valuation ξ that has been added as an annotation by the looka-
head oracle describes the new state of the mapper after an output action. The
abstraction function replaces ξ by an update function % that specifies how ξ can
be computed from the old state r and the input and output values received.

Example 8. As a result of interaction with mapper AF∅ , the learner succeeds
to construct the abstract hypothesis shown in Figure 6. This first hypothesis
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l0start l1 l2

Push(⊥)/OK()
x1:=in

Pop()/NOK() Push(⊥)/OK()
x2:=in

Pop()/Return(x1) Pop()/Return(x1)
x1:=x2

Push(⊥)/NOK()

Fig. 6: First hypothesis of the FIFO-set

is incorrect since it does not check if the same value is inserted twice. This is
because the Abstractor only generates fresh values during the learning phase.

A flaw in the hypothesis will (hopefully) be detected during the hypothesis
verification phase, and the resulting counterexample will then be used for an
abstraction refinement. In order to test the correctness of a hypothesis, we need
to concretize it. Using the theory of [4] we get a concretization operator for
free, but in Tomte we actually use a slightly different concretization, which uses
information about the abstract hypothesis to make smart guesses about what
to do in situations where the mapper state is not injective. We refer to [1] for a
detailed discussion of this issue.

7.2 Counterexample Analysis

During hypothesis verification the mapper selects random values from a small
range for every abstract parameter value ⊥. In this way it will find a concrete
counterexample trace, e.g. Pop() NOK() Push(9) OK() Pop() Return(9) Push(3)
OK() Push(3) NOK(), that is generated by the SUL but not allowed by the
hypothesis, which specifies that the last output should be OK(). In order to
simplify the analysis and to improve scalability, Tomte first tries to reduce the
length of the counterexample. To this end it uses two reduction strategies, first
removing loops, then single transitions. Both of these approaches are described
in detail in [15]. Single transition reduction is an optimization applied in this
work but not used in [1].

Long sequences of inputs typically lead to loops when they are run in the
hypothesis. Tomte eliminates these loops and checks if the result is still a coun-
terexample. Removing cycles from the concrete counterexample results in the
reduced counterexample Push(3) OK() Push(3) NOK(). Tomte then eliminates
each transition from left to right, preserving the resulting trace if it is still a coun-
terexample. In this case, removing either transition yields the trace Push(3) OK()
which is not a counterexample. So Push(3) OK() Push(3) NOK() is preserved.
Once shortened, Tomte needs to determine if the counterexample is meant for
the Learner to handle or requires abstraction refinement. It does so by converting
the reduced concrete counterexample into one in which the input parameters are
fresh, Push(1) OK() Push(2) NOK, and running it on the SUL. This fails since
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the last output returned by the SUL is OK. This means that Tomte needs to
refine the input abstraction.

For a detailed discussion of the counterexample analysis algorithm used in
Tomte we refer to [1]. Here we just sketch the main ideas. We walk through a
counterexample trace and check for each input value if it occurs earlier in the
trace. If so, then we check if this relation is already covered by mapper parameter
F . If not we have found a potential source for the counterexample. It is possible
that the two values are equal by chance, and that their equality is irrelevant
for the counterexample. We test this by making the value fresh and recheck if
the resulting trace is still a counterexample. If it is still a counterexample, the
equality of the two values is not needed for the counterexample, so we leave the
fresh value in the trace and continue with the next input. Otherwise, the equality
of the two values does matter and we can refine the abstraction by extending
the function F . A complicating factor is that a value not related with a value in
history can still be important for the counterexample by a relation with an input
parameter further on in the trace. So when we toggle a value to a fresh value
we also consider all possible ways to toggle along subsequent parameters in the
trace with the same value to the same fresh value and verify if the result is still a
counterexample. If we find such a possibility then we keep the toggle and continue
with next input parameter, else we have really found a meaningful refinement.
After analysis of the counterexample, three things may happen: (1) the mapper
used by the Abstractor is refined via an extension of function F , (2) the set of
lookahead traces is extended since we have found a new memorable value, the
added lookahead traces should fetch this value during the new learning iteration,
(3) we have discovered that the abstract hypothesis is incorrect, construct an
abstract version of the counterexample, and forward it to the Learner. In the
current algorithm, as an optimization to [1], the set of lookahead traces is only
extended with the shortest lookahead traces required to fetch the memorable
value. This leads to comparatively shorter lookahead traces. Do note however,
that the length of the longer lookahead trace remains heavily dependent on the
reduced counterexample length. Hence, techniques such as loop and single trace
reduction are essential.

In the analysis of the counterexample for the hypothesis of Figure 6, Tomte
discovers that it is relevant if the parameter of input Push is equal to variable x1.
Therefore, the set F (Push) is extended to {x1}. Consequently, the alphabet of
the learner is extended with a new input symbol Push(x1) and a corresponding
lookahead trace is added to the lookahead oracle. Again, the entire learning
process is restarted from scratch. The next hypothesis learned is equivalent to
the model in Figure 1 and the learning algorithm stops.

8 Evaluation and Comparison

We used our tool to learn models of various benchmarks such as SIP, the Alter-
nating Bit Protocol, the Biometric Passport, FIFO-Sets, and Multi-Login Sys-
tems. Apart from the last one all these benchmarks have already been tackled
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Learnlib Tomte 0.3 Tomte 0.4

learn learn ana ana learn learn ana ana learn learn ana ana
res inp res inp res inp res inp res inp res inp

Alternating bit protocol sender

avg 452 2368 40551 405577 465 2459 7 15 65 224 13 30
stddev 453 2781 125904 1258919 0 2 4 11 1 0 1 5

Alternating bit protocol receiver

avg 6077 102788 72 1420 271 1168 19 56 203 989 4 6
stddev 13184 245291 57 2813 1 0 4 13 0 0 2 2

Biometric passport

avg 914 8517 365 7768 8769 43371 55 287 729 2884 33 143
stddev 614 12089 112 4334 5 35 7 56 1 3 4 43

Alternating bit protocol channel

avg 52 252 29 173 67 210 0 0 37 102 0 0
stddev 29 235 12 115 0 0 0 0 0 0 0 0

Palindrome/repnumber checker

avg 5 5 2050 8032 8366 24713 80 139 413 815 25 23
stddev 0 0 6225 24909 4 9 14 27 1 0 1 2

Session initiation protocol

avg 92324 1962160 106868 1178964 6195 39754 256 1568 2557 14029 177 925
stddev 137990 4078104 336225 3696587 1103 7857 94 626 108 722 33 192

FIFO-set(2)

avg 44 136 12 44 99 423 6 17 52 220 9 19
stddev 11 49 9 44 0 2 1 5 1 2 2 13

FIFO-set(7)

avg 66392 1097470 634 13530 3215 31487 132 1284 1804 19306 143 1123
stddev 195580 3310472 66 2397 7 70 44 616 7 57 52 636

FIFO-set(30)

avg unable to learn 591668 20206862 15714 620479 336435 13285345 11443 473839
stddev 72 2112 1427 232984 107 3416 1785 164348

Multi-Login(1)

avg unable to learn unable to learn 3910 21943 323 7002
stddev 1095 14882 629 19774

Multi-Login(2)

avg unable to learn unable to learn 107057 667356 678 3361
stddev 21274 139189 209 1395

Multi-Login(3)

avg unable to learn unable to learn 6495794 55821831 3202 22846
stddev 1237096 12218366 1021 9750

Table 1: Experimental comparison between LearnLib, Tomte 0.3 and Tomte 0.4

in [3] with Tomte 0.3, a previous version of our tool, and with LearnLib. All
benchmarks are available via the Tomte website.

Table 1 shows results Tomte 0.4, the release subject of this work, side by side
with the results for LearnLib and Tomte 0.3 as reported in [3]. Results for each
model are obtained by running the learner 10 times with 10 different seeds. Over
these runs we collect the average and standard deviation for the numbers of:
– reset queries run during learning (learn res),
– concrete input symbols applied during learning (learn inp),
– reset queries run during counterexample analysis (ana res), and
– concrete input symbols applied during counterexample analysis (ana inp).

We omit running times here, as we consider the number of queries to be a su-
perior metric for measuring efficiency, but the reader may find them at http://
automatalearning.cs.ru.nl/. Experiments were done using a random equiv-
alence oracle configured with a maximum test query length of 100. We used
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10000 test runs per equivalence query for all models apart from the Multi-Login
Systems which required more runs.

Tomte 0.4 shows to be more efficient than LearnLib and Tomte 0.3. The
average number input symbols needed to learn decreased between 15 percent
to over 90 percent compared to Tomte 0.3 and up to 99 percent compared to
LearnLib. LearnLib still performs better for two models but, as noted in [3], it
does not scale well for more complex systems. The average number of inputs
Tomte 0.4 needs for counterexample analysis is also generally lower. Improve-
ments over Tomte 0.3 can be largely explained by the optimizations in lookahead
and counterexample processing that we presented in this article.

The Multi-Login System benchmark can only be handled by Tomte 0.4 (and
no other tool to our knowledge) due to the occurrence of fresh outputs. The
benchmark generalizes the example of Figure 2 to multiple users. The difference
is an additional input parameter for the user ID, when logging in and registering.
Moreover, a configurable number of users may register, supporting simultaneous
login sessions for different registered users. Tomte 0.4 was able to successfully
learn instantiations of Multi-Login Systems for 1, 2 and 3 users. The current
learning algorithm does not scale well for higher numbers of users. This can be
ascribed to the large number of memorable values in combination with the large
numbers of abstractions required for this benchmark. The latter is also due to
the order in which memorable values are found and thus indexed, which can
differ per state.

9 Conclusions and Future Work

We have presented a mapper-based algorithm for active learning of register au-
tomata that may generate fresh output values. This class is more general than
the one studied in previous work [8, 9, 2, 1, 3]. We have implemented our ac-
tive learning algorithm in the Tomte tool and have evaluated the performance
of Tomte on a large set of benchmarks, measuring the total number of inputs
required for learning. For a set of common benchmarks without fresh outputs
Tomte outperforms LearnLib (on the numbers reported in [3]), but many fur-
ther optimizations are possible in both tools. In addition, Tomte is able to learn
models of register automata with fresh outputs. Our method for handling fresh
outputs is highly efficient and the computational cost of the determinizer is neg-
ligible in comparison with the resources needed by the lookahead oracle and the
abstractor. Our next step will be an extension of Tomte to a class of models with
simple operations on data.
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